【目标检测】G-GhostNet

论文提出了C-Ghost和G-Ghost模块,旨在解决网络部署在资源有限设备上的问题。C-GhostNet适合CPU,而G-GhostStage针对GPU优化,通过阶段特征冗余减少深度卷积,以实现精度和延迟的平衡。文章还讨论了激活度作为衡量GPU延迟的关键因素,并介绍了混合操作来增强Ghost特征的语义信息。G-GhostNet是基于这些概念构建的网络结构。

1、论文

论文题目:《GhostNets on Heterogeneous Devices via Cheap Operations》
论文地址: https://arxiv.org/pdf/2201.03297.pdf
代码地址: https://github.com/huawei-noah/CV-Backbones

2、引言

本文针对网络部署时面临的内存和资源有限的问题,提出两种不同的Ghost模块,旨在利用成本低廉的线性运算来生成Ghost特征图。
C-Ghost模块被应用于CPU等设备,并通过简单的模块堆叠实现C-GhostNet。
进一步考虑GPU设备的高效网络。不需要在构建阶段涉及太多gpu效率低的操作(例如,深度卷积),建议利用阶段性特征冗余来制定gpu效率高的G-Ghost stage结构。将某一stage的特征分为两部分,其中第一部分使用输出通道较少的原始块来生成内在特征,而另一部分使用利用阶段冗余的廉价操作来生成。
在基准上进行的实验证明了提出的C-Ghost模块和G-Ghost stage的有效性。C-GhostNet和G-GhostNet可以实现精度和延迟的最佳权衡。

3、发现问题

3.1

虽然C-GhostNets在保持高性能的同时保持准确度不变,但用于生成更多特性的廉价操作在GPU上仍不是非常廉价和高效。具体来说,深度卷积的运算强度通常较低,即计算与内存运算的比率,不能充分利用并行计算能力。如何在精度和GPU延迟之间取得更好的平衡,仍然是一个被忽视的问题。
除了FLOPs和参数数量,Radosavovic等人引入了激活度activations来测量网络的复杂性,即所有卷积层的输出张量的大小。GPU上的

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值