超强大的PDF数据提取库PyMuPDF4LLM

PyMuPDF4LLM,顾名思义,它是一个为pymupdf添加了LLM的输出功能的库。

PyMuPDF4LLM的特点:

多功能 Markdown 提取

PyMuPDF4LLM支持广泛的任务,从基本的文本提取到适合微调LLM的 Markdown格式的数据采集。

灵活运用

除了文本提取之外,该工具还可以逐页检索数据,将其保存为RAG任务所需的格式,甚至将数据直接传递给 LlamaIndex 等框架。

丰富的提取功能

除了文本之外,还可以满足图像提取、分词、表格提取等细节需求。这些功能在多种情况下都很有用,包括知识库创建和情感分析。

安装方法

首先,让我们安装 PyMuPDF4LLM。

pip install pymupdf4llm

用例 1:基本 Markdown 提取

让我们获取 Markdown 格式的 PDF 内容。

import pymupdf4llm
md_text = pymupdf4llm.to_markdown("document.pdf")

以 Markdown 格式获取可以保留标题和列表等结构,使其成为 LLM 训练数据的理想选择。

用例 2:仅提取特定页面

仅提取您需要的页面也很容易。

import pymupdf4llm
# 只抽取指定的第8页,第9页
md_text = pymupdf4llm.to_markdown("document.pdf", pages=[8, 9])

它非常高效,因为您可以从大型PDF中仅提取所需的部分。

用例 3:将 Markdown 保存到文件

让我们将提取的 Markdown 保存到文件中。

import pymupdf4llm
import pathlib
md_text = pymupdf4llm.to_markdown("document.pdf")
pathlib.Path("output.md").write_bytes(md_text.encode())

用例 4:提取为 LlamaIndex 的文档

您还可以以与 LlamaIndex兼容的格式检索数据。

import pymupdf4llm
llama_reader = pymupdf4llm.LlamaMarkdownReader()
llama_docs = llama_reader.load_data("document.pdf")

用例 5:提取图像

提取图像也很容易。

md_text_images = pymupdf4llm.to_markdown(
    doc="document.pdf",
    pages=[1, 11],
    page_chunks=True,
    write_images=True,
    image_path="images",
    image_format="png",
    dpi=300
)

用例 6:对数据进行分块并使用元数据进行提取

还可以对数据进行分块并使用元数据检索它。

md_text_chunks = pymupdf4llm.to_markdown(
    doc="document.pdf",
    pages=[0, 1, 2],
    page_chunks=True
)

用例 7:详细的逐字提取

它还支持您想要以字为单位获取数据的情况。

md_text_words = pymupdf4llm.to_markdown(
    doc="document.pdf",
    pages=[1, 2],
    page_chunks=True,
    write_images=True,
    image_path="images",
    image_format="png",
    dpi=300,
    extract_words=True
)
print(md_text_words[0]['words'][:5]) 

用法示例8:整齐地提取表格

import pymupdf4llm
md_text_tables = pymupdf4llm.to_markdown(
    doc="document.pdf",
    pages=[12]  # 存在表格的页面
)
print(md_text_tables)

如果您正在构建RAG系统、微调您的LLM,或者只是在寻找出色的 PDF提取工具,可以尝试一下PyMuPDF4LLM。


最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

### 在 RAGFlow 中实现 PDF 解析 为了在 RAGFlow 中有效地解析 PDF提取特定信息,可以采用一种综合性的策略。该过程不仅涉及技术工具的选择,还涉及到如何处理所获取的数据。 #### 工具和技术选择 对于从 PDF 提取结构化数据的任务,在 RAGFlow 架构下推荐使用专门设计用于此目的的技术栈。具体来说,可以从 PDF 表到见解:在 RAG 中解析 PDF 的另一种方法中获得灵感[^1]。这种方法强调利用先进的光学字符识别 (OCR) 技术以及机器学习算法来提高准确性。通过这种方式,不仅可以读取文本内容,还能理解表格布局和其他视觉元素的意义。 #### 数据预处理与增强 当目标是从复杂的 PDF 文件中抽取有价值的信息时,前期准备至关重要。这包括但不限于清理扫描件上的噪声、修复损坏页面等问题。此外,还可以应用自然语言处理(NLP)技术对原始文本进行分词、标注等操作以便后续分析。文档解析功能支持多种文件格式,并能有效提取其中的文字块、表格及图片等内容;尤其适用于需要转换成可编辑形式的情况[^2]。 #### 结合 LLM 和嵌入模型优化检索效率 为了让用户能够快速定位感兴趣的部分,应当充分利用语言模型(LLM)和向量数据的优势。前者可以帮助构建更智能的问题匹配机制,而后者则使得相似度查询变得高效可行。LLM 和嵌入模型共同作用于提升问答系统的性能表现,确保即使面对海量资料也能迅速给出精准答案。 ```python import fitz # PyMuPDF, 用于PDF处理 from transformers import pipeline # Hugging Face Transformers, 可选NLP工具 def extract_pdf_info(pdf_path): document = fitz.open(pdf_path) text_blocks = [] for page_num in range(len(document)): page = document.load_page(page_num) text_block = page.get_text("blocks") # 获取每页的文本块列表 text_blocks.extend(text_block) return text_blocks pdf_data = extract_pdf_info('example.pdf') print(pdf_data[:5]) # 打印前五个文本块作为示例输出 ``` 上述代码片段展示了如何使用 Python `PyMuPDF` 来加载并逐页提取 PDF 文档内的文本块。这只是基础步骤之一,实际项目可能还需要进一步加工这些初步得到的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值