一、前言
随着LLM的发展和应用,在LLM的预训练模型基础上做微调,使其适用于自己的业务场景的研究越来越多。与全参数SFT相比LoRA是在冻结LLM本身参数的基础上,在旁路增加两个可学习的矩阵,用于训练和学习,最后推理是LLM输出和可学习的矩阵的输出相加,得到最终的输出。它与全参数微调方法区别是:
资源上的差异:
-
全参数微调:需要加载和更新全部LLM参数,需要更高的显存(需要的显存一般是单一参数的4倍),数据量上也需要更多的微调数据;
-
LoRA:只需要加载LLM参数,训练两个可学习的低秩矩阵,显存和数据量要求较低,训练速度也更快;
效果上差异:
- 全参数微调:存在灾难性遗忘的风险,理论效果上限更高;
- LoRA:和全参数微调效果差距不大,稳定性和扩展性更好;
二、LoRA原理
LoRA低秩适应微调,该方法的核心思想就是通过低秩分解来模拟参数的改变量,从而以极小的参数量来实现大模型的间接训练。
它的做法是:
三、LoRA的变种
QLoRA
与LoRA相比:LLM模型采用4bit加载,进一步降低训练需要显存。
QLoRA是进一步降低了微调需要的显存,QLoRA是将模型本身用4bit加载,训练时把数值反量化到bf16后进行训练,利用LoRA可以锁定原模型参数不参与训练,只训练少量LoRA参数的特性使得训练所需的显存大大减少。
LoRA+
与LoRA相比:AB矩阵采用不同的学习率;AB矩阵应用到全部参数矩阵。
LoRA+通过为矩阵A和B引入不同的学习率,更有效的训练LoRA适配器。LoRA在训练神经网络时,学习率是应用于所有权重矩阵(包括embeded和normalization层)。而LoRA+的作者可以证明,只有单一的学习率是次优的。将矩阵B的学习率设置为远高于矩阵A的学习率,可以使得训练更加高效。
t是放大因子,t>1。
LoRA-FA
与LoRA相比:仅训练B矩阵。
LoRA-FA是LoRA与Frozen-A的缩写,在LoRA-FA中,矩阵A在初始化后被冻结,矩阵B是在用零初始化之后进行训练(就像在原始LoRA中一样)。这将参数数量减半,同时具有与普通LoRA相当的性能。
LoRA-drop
LoRA矩阵可以添加到神经网络的任何一层,LoRA-drop则引入了一种算法来决定哪些层由LoRA微调,哪些层不需要。
LoRA-drop步骤:
-
1.对数据的一个子集进行采样,训练LoRA进行几次迭代;
-
2.将每个LoRA适配器的重要性计算为BAx,其中A和B是LoRA矩阵,x是输入;
-
3.如果这个输出很大,说明它会更剧烈地改变行为,如果它很小,这表明LoRA对冻结层的影响很小可以忽略;
-
4.可以汇总重要性值,直到达到一个阈值(这是由一个超参数控制的),或者只取最重要的n个固定n的LoRA层;
-
5.最后在整个数据集上进行完整的训练,其他层固定为一组共享参数,在训练期间不会再更改。
LoRA-drop算法允许只使用LoRA层的一个子集来训练模型。根据作者提出的证据表明,与训练所有的LoRA层相比,准确度只有微小的变化,但由于必须训练的参数数量较少,因此减少了计算时间。
AdaLoRA
在LoRA-drop中作者根据LoRA适配器的重要程度,选择部分不重要的LoRA不参与训练。而AdaLoRA作者则是根据重要程度,选择不同LoRA适配器调整秩的大小(原始LoRA所有层秩都一样)。另外AdaLoRA是根据LoRA矩阵的奇异值作为重要程度指标的。
AdaLoRA与相同秩的标准LoRA相比,两种方法总共有相同数量的参数,但这些参数的分布不同。在LoRA中,所有矩阵的秩都是相同的,而在AdaLoRA中,有的矩阵的秩高一些,有的矩阵的秩低一些,所以最终的参数总数是相同的。经过实验表明AdaLoRA比标准的LoRA方法产生更好的结果,这表明在模型的部分上有更好的可训练参数分布,这对给定的任务特别重要。
DoRA
通常认为LoRA等微调技术不如正常微调(Finetune)的原因是,LoRA被认为是对Finetune微调的一种低秩近似,通过增加Rank,LoRA可以达到类似Finetune的微调效果。但是作者发现LoRA的学习模式和FT很不一样,更偏向于强的正相关性,即方向和幅度呈很强的正相关,这可能对更精细的学习有害。
图中x轴是模型更新方向,y轴是幅度变化,图中的散点是每一层。可以看到FT的训练方式,更新的方向和幅度并没有太大关系(或者小的负相关),而LoRA存在较强的正相关性。
哪一种方向和幅度相关性更好?
这个不确定,但是LoRA的目的是利用较小参数达到和FT一致的效果,所以从相关性上应该LoRA的应该更像FT。所以作者将预训练参数矩阵进行分解,分解成包括大小(magnitude)和方向(directional)两个向量,只在方向上应用LoRA微调。
DoRA的作者通过将预训练矩阵W分解,得到大小为1 x d的大小向量m和方向矩阵V,从而独立训练大小和方向。然后方向矩阵V通过B* A增强(LoRA),然后m按原样训练。虽然LoRA倾向于同时改变幅度和方向(正如这两者之间高度正相关所表明的那样),DoRA可以更容易地将二者分开调整,或者用另一个的负变化来补偿一个的变化。所以可以DoRA的方向和大小之间的关系更像微调。代码如下
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
import torch
import torch.nn as nn
import torch.nn.functional as F
# This layer is dropped into your pre-trained PyTorch model where nn.Linear is used
class DoRALayer(nn.Module):
def __init__(self, d_in, d_out, rank=4, weight=None, bias=None):
super().__init__()
if weight is not None:
self.weight = nn.Parameter(weight, requires_grad=False)
else:
self.weight = nn.Parameter(torch.Tensor(d_out, d_in), requires_grad=False)
if bias is not None:
self.bias = nn.Parameter(bias, requires_grad=False)
else:
self.bias = nn.Parameter(torch.Tensor(d_out), requires_grad=False)
# m = Magnitude column-wise across output dimension
self.m = nn.Parameter(self.weight.norm(p=2, dim=0, keepdim=True))
std_dev = 1 / torch.sqrt(torch.tensor(rank).float())
self.lora_A = nn.Parameter(torch.randn(d_out, rank)*std_dev)
self.lora_B = nn.Parameter(torch.zeros(rank, d_in))
def forward(self, x):
lora = torch.matmul(self.lora_A, self.lora_B)
adapted = self.weight + lora
column_norm = adapted.norm(p=2, dim=0, keepdim=True)
norm_adapted = adapted / column_norm
calc_weights = self.m * norm_adapted
return F.linear(x, calc_weights, self.bias)
LongLoRA
LongLoRA 是港中文和 MIT 在 23 年发表的一篇 paper,主要是为了解决长上下文的注意力机制计算量很大的问题。
LLM支持长文本的方法,包括利用NTK等方式进行外推和内插,但为了让模型表现更好,一般还会进行微调。LongLoRA的要点:
-
1.S2-attn注意力:这一点与LoRA无关,是为解决长序列注意力成二次方增加的问题,S2-attn在训练时不计算全局的注意力,而是将所有token分组,每个token只计算该组和相邻组的注意力,降低显存消耗,提升训练速度。(和longformer、Big Bird等处理长文本注意力方法没有太大区别,都是只算该token附近的注意力);
-
2.LoRA训练(变种):在潜入层、归一化层也都加入了LoRA权重进行训练;
四、总结
LoRA系列大模型微调方法是大模型PEFT非常重要的一个研究方向,也是目前工程届应用最广法的微调方法之一,基于LoRA的改进的论文和方法还在不断更新。
五、最后分享
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】