今天刷到Sebastian的blog,《Understanding Reasoning LLMs》,特此翻译一下,带给大家。
原文: https://magazine.sebastianraschka.com/p/understanding-reasoning-llms
一、如何定义“推理模型”?
如果你在AI(或机器学习)领域工作,你可能对模糊且备受争议的定义很熟悉。“推理模型”这个术语也不例外。最终,会有人在论文中正式定义它,但很快就会在下一篇论文中被重新定义~
在本文中,我将“推理”定义为回答需要复杂、多步骤生成并包含中间步骤的问题的过程。例如,像“法国的首都是哪里?”这样的事实问答不涉及推理。相反,像“如果一列火车以每小时60英里的速度行驶3小时,它能走多远?”这样的问题需要一些简单的推理。例如,它需要认识到距离、速度和时间之间的关系,然后才能得出答案。
一个普通的LLM可能只提供一个短的答案(如左图所示),而推理模型通常包括显示部分思维过程的中间步骤(请注意,许多未专门为推理任务训练的LLMs也可以在其答案中提供中间推理步骤)
大多数LLMs都具备基本的推理能力,能够回答像“如果一列火车以每小时60英里的速度行驶3小时,它能走多远?”这样的问题。所以,当我们提到推理模型时,指的是那些在更复杂的推理任务(如解决谜题、谜语和数学证明)中表现出色的LLMs。
此外,现在大多数被称为推理模型的LLMs在其回复中都包含一个“思考”或“思维”过程。
而推理模型的中间步骤可以以两种方式出现,第一种可能明确地包含在回复中,如图所示。第二种,如OpenAI的o1等一些推理LLMs,会运行多个迭代的中间步骤,且不显示给用户。
"推理"在两个不同的层次上使用:1)处理输入并通过多个中间步骤生成,2)在响应中向用户提供某种推理
二、何时使用推理模型?
推理模型旨在擅长解决复杂任务,如解决谜题、高级数学问题和具有挑战性的编程任务。然而,对于简单的任务(如摘要、翻译或基于知识的问题回答)并不是必需的。如果将推理模型用于所有任务,会导致效率低下且昂贵,并且有时由于“过度思考”而更容易出错。推理模型的推理模型的优劣势如下图所示,我们需要为任务选择合适的工具或LLM。
推理模型的优劣势
三、概述 DeepSeek 训练流程
DeepSeek发布了三个不同的变体:DeepSeek-R1-Zero、DeepSeek-R1和DeepSeek-R1-Distill。
模型的训练过程总结,如下图所示。
DeepSeek三种不同推理模型的训练过程
-
DeepSeek-R1-Zero:在DeepSeek-V3基模基础上,直接应用强化学习,不使用任何SFT数据进行冷启动。
-
DeepSeek-R1:在DeepSeek-V3基模基础上,先通过额外的SFT阶段和进一步的RL训练进一步精炼,改进了“冷启动”的R1-Zero模型。
-
DeepSeek-R1-Distill*:使用前面步骤中生成的SFT数据,对Qwen和Llama模型进行了微调,以增强其推理能力,纯SFT。
四、四种构建和改进推理模型的方法
概述目前用于增强LLMs推理能力和构建专门推理模型(如DeepSeek-R1、OpenAI的o1和o3等)的关键技术。
注意:o1和o3的确切工作原理尚不清楚,纯猜测。
Inference-time scaling
推理时间扩展,指的是在推理时增加计算资源以提高输出质量。
一个粗略的类比是,人类在有更多时间思考复杂问题时往往会生成更好的回答。同样,我们可以应用一些技术,鼓励LLM在生成答案时“多思考”。
一个直接的推理时扩展方法是提示工程。一个经典例子是思维链(CoT)提示,在输入提示中加入“逐步思考”之类的短语。鼓励模型生成中间推理步骤,而不是直接跳到最终答案,会在更复杂的问题上通常(但不总是)会导致更准确的结果。
来自https://arxiv.org/abs/2205.11916
上述CoT方法可以被视为推理时间扩展,因为它通过生成更多的输出标记使推理变得更昂贵。
另一种推理时间扩展的方法是使用投票和搜索策略。一个简单的例子是多数投票,让LLM生成多个答案,然后通过多数投票选择正确答案。同样,可以使用束搜索和其他搜索算法来生成更好的回答。
想了解更多关于这些不同策略的详细信息可阅读《Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters》文章。
不同的基于搜索的方法依赖于基于过程-奖励的模型来选择最佳答案
纯强化学习
DeepSeek R1论文中的一大亮点是,发现推理可以从纯的强化学习(RL)中学习。与典型的RL方法(在RL之前先监督微调SFT)不同,DeepSeek-R1-Zero仅使用强化学习进行训练,没有初始的SFT阶段,也就是为什么其为“纯”的RL。,如下图所示。
DeepSeek-R1-Zero模型的训练过程
对于奖励,没有使用基于人类偏好的训练奖励模型,而是使用了两种类型的奖励:准确性和格式奖励。
-
准确性奖励,使用LeetCode编译器验证编码答案,并使用确定性系统评估数学回答。
-
格式奖励,依赖于一个LLM裁判,以确保回答遵循预期的格式,例如将推理步骤放在标签内。
令人惊讶的是,这种方法是可以让LLM具备更强推理能力的。尽管R1-Zero不是表现最好的推理模型,但通过生成中间“思考”步骤展示了推理能力,如上图所示。证实了使用纯粹的RL训练推理模型是可能的,DeepSeek团队是第一个展示(或者至少是发表)这种方法的团队。
来自DeepSeek R1技术报告
监督微调和强化学习
实际上在RL之前包含一个SFT阶段是很常见的。OpenAI的o1很可能是使用类似的方法训练的。
DeepSeek-R1模型的训练过程
如上图所示,使用DeepSeek-R1-Zero生成了所谓的“冷启动”SFT数据。
首先使用这些“冷启动”SFT数据,通过指令微调训练了模型;然后再经过一个RL阶段,在这个RL阶段中,不仅保留了DeepSeek-R1-Zero的RL过程中使用的准确性和格式奖励,还增加了一个一致性奖励,以防止语言混合,在回答中切换多种语言情况。
在RL阶段之后是又一轮的SFT数据收集,使用最新的模型checkpoint生成了600k 个思维链(CoT)SFT样本,同时使用DeepSeek-V3基础模型创建了额外的200K个基于知识的SFT样本。再经过另一轮RL,使用基于规则的方法为数学和编码问题提供准确性奖励,而人类偏好标签用于其他问题类型。
最终的模型,DeepSeek-R1,与DeepSeek-R1-Zero相比,性能有了显著提升,如下表所示。
来自DeepSeek-R1技术报告
纯监督微调(SFT)和蒸馏
DeepSeek还发布了通过“蒸馏”过程训练的较小模型。这里的蒸馏指的是在由较大LLMs生成的SFT数据集上对较小的LLMs(如Llama 8B和70B以及Qwen 2.5模型(0.5B到32B))进行指令微调。在下图中突出了蒸馏部分。
DeepSeek-R1-Distill模型的训练过程
为什么要训练这些蒸馏模型?有两个关键原因:
-
较小的模型更高效。这意味着它们运行成本更低,而且可以在较低端的硬件上运行,更吸引研究者和大模型爱好者。
-
纯SFT的方法研究。这些蒸馏模型作为一个有趣的基准,展示了纯监督微调(SFT)可以在没有强化学习的情况下将模型带到多远。
下表比较了这些蒸馏模型与其他流行模型的性能,以及DeepSeek-R1-Zero和DeepSeek-R1。
蒸馏与非蒸馏模型的基准比较
正如我们所见,蒸馏模型明显弱于DeepSeek-R1,但与DeepSeek-R1-Zero相比,尽管它们小了几个数量级,但效果却很强。与o1 mini相比,这些模型的表现也相当不错(我怀疑o1-mini本身可能是o1的一个类似的蒸馏版本)。
同时还测了在DeepSeek-R1-Zero中看到的纯RL方法,是否也能出现在较小的模型中,将DeepSeek-R1-Zero的相同纯RL方法直接应用于Qwen-32B。
32B模型的蒸馏和RL的基准比较
结果表明,对于较小的模型来说,蒸馏比纯RL更有效。
四种方法小结
-
推理时扩展不需要额外的训练,但会增加推理成本,随着用户数量或查询量的增加,大规模部署会变得更加昂贵。然而,对于已经表现强劲的模型来说,它仍然是一个不假思索的选择。我强烈怀疑o1利用了推理时扩展,这有助于解释为什么它在每个标记上的成本比DeepSeek-R1更高。
-
纯RL对于研究目的很有趣,因为它提供了关于推理作为一种新兴行为的见解。然而,在实际的模型训练中,RL + SFT是首选方法,因为它可以产生更强大的推理模型。
-
RL + SFT是构建高性能推理模型的关键方法。
-
蒸馏是一种有吸引力的方法,特别是用于创建更小、更高效的模型。然而,它的局限性在于蒸馏不能推动创新或产生下一代推理模型。例如,蒸馏总是依赖于一个现有的、更强的模型来生成监督微调(SFT)数据。
五、如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】