一文看懂Agentic AI、AI Agents和Agents,以及三者的区别!

Agentic AI、AI Agents和Agents这三个词频繁出现在各大自媒体上。

1、Agents(智能体/代理)

最基础的概念,指任何能感知环境并为达成目标而行动的实体,可以是软件、硬件,甚至是人。关键是:它不需要AI也能工作。

举个栗子:家里的热水器恒温器就是个典型Agent。它感知温度(环境感知),开关加热系统(采取行动),保持设定温度(实现目标)。它只是按照预设规则工作,不需要任何AI能力。

2、AI Agents(AI智能体/代理)

这是升级版的agents,由AI驱动。它们不再只是遵循简单规则,而是能利用机器学习、自然语言处理等AI技术做决策。

最大特点是:能从数据中学习,适应新情况,随时间变得更聪明。

举个栗子:Siri、小爱同学这类虚拟助手就是AI Agents。它们能理解你的语音指令,学习改进回答质量,执行设置闹钟、播放音乐等任务。

目前的许多AI模型(如GPT)集成到工作流程中时可以充当Agents,但它们并不完全自主。

3、Agentic AI

这才是真正的重头戏!Agentic AI把AI agents带到了一个全新境界,让它们更加自主、适应性强且主动。

与被动等待指令的普通AI agents不同,Agentic AI能自主规划、决策,无需人类指示就能行动。

举个栗子:一个管理智能家居的Agentic AI系统不仅能调节温度,还能在食物快用完时自动下单,安排家电维护,优化能源使用——全程无需你动手。

再比如,它不只是按要求帮你订机票,还会主动监控票价,提醒你最佳购票时机,甚至在发现更优惠价格时自动重新预订——这一切都不需要你开口。

本质区别:

  • AI Agents是工具,等你使用
  • Agentic AI是决策者,主动为你服务

在这里插入图片描述

最后

Agent作为一个热门概念,已经被过度使用和炒作,一些成熟产品选择回归本质,强调其实际价值而非概念标签。而且相比于需要学习如何与Agent互动,用户更愿意使用看起来像传统工具但具备AI能力的产品。


4、如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。

在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

### Agentic AI介绍 Agentic AI描述的是人工智能具备自主性的能力行为[^2]。这种技术使机器能够在复杂环境中独立做出决策,设定目标并采取行动来达成这些目标。 #### 原理 Agentic AI的核心在于赋予计算机程序或机器人自我意识主动解决问题的能力。这涉及到多个方面: - **感知能力**:通过传感器或其他输入机制获取周围世界的实时数据。 - **认知处理**:利用算法分析收集到的数据,理解当前状况以及可能的变化趋势。 - **规划与决策**:基于对环境的理解,制定行动计划,并评估不同选项之间的利弊得失。 - **执行控制**:按照选定策略实施具体操作,同时监控进展并对意外情况进行调整。 ```python def agentic_ai_process(environment_data): perception_results = analyze_environment(environment_data) decision_plan = make_decision(perception_results) execute_actions(decision_plan) while not goal_achieved(): adjust_strategy() continue_execution() ``` #### 特点 - 自主性:无需人类持续干预即可自行运作。 - 目标导向性:能够设立长期或短期的目标,并努力实现它们。 - 适应性:面对变化时表现出灵活性,快速学习新情况下的最佳应对方式。 - 多功能性:适用于各种应用场景,从工业制造到个人助理服务等领域。 #### 应用 Agentic AI的应用非常广泛,在零售业中,AI Agents可以帮助优化库存管理客户服务体验;在物流配送领域,则可提高运输效率降低运营成本。此外,还有智能家居控制系统、自动驾驶汽车等新兴方向也离不开这项关键技术的支持[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值