随着大语言模型(LLM)在各行各业的落地应用,Retrieval-Augmented Generation(检索增强生成,简称 RAG)已成为提升模型实用性和准确性的关键技术。无论是企业优化客户服务,还是科研机构挖掘专业知识,RAG 的身影无处不在。
本文将深入探讨 RAG 的必要性,并对比 Dify、FastGPT、RAGFlow 和 LangChain 这四个广受欢迎的框架,从功能深度、适用场景等维度为你提供选择依据。
文末有详细对比表格。小编后续将持续更新 RAG 实践内容,关注不走丢!
RAG:大语言模型落地的“秘密武器”
大语言模型凭借强大的语言生成能力席卷各领域,但其静态知识库存在时效性不足和专业性有限的问题。例如,询问企业最新政策时,模型可能无能为力;处理复杂表格或图像数据时,可能生成不可靠的回答。RAG 通过检索外部动态数据(如文档、数据库)并结合生成技术,显著提升了模型的上下文相关性和准确性,成为 LLM 落地的核心推动力。
这也解释了为何企业和单位热衷于搭建 RAG 系统。企业利用 RAG 开发智能客服,提升响应效率;科研机构整合文献资源,加速知识挖掘;开发者则打造个性化助手,满足多样化需求。RAG 的价值在于将模型与实时数据桥接,适应复杂多变的应用场景。
为什么需要 RAG 框架?
RAG 的实现涉及数据预处理、检索系统构建和生成模型集成,看似简单,实则充满挑战。数据需支持多模态输入(如文本、图片、表格),检索需优化召回率和精确度,生成则需精细调整提示词和参数。这些环节对技术栈、计算资源和优化经验要求较高,单靠手动开发效率低下且易出错。
RAG 框架应运而生。RAG 框架是什么? 它是一套集成检索与生成功能的工具集,通过模块化设计和预配置功能,简化了从数据接入到结果输出的流程。框架不仅降低开发门槛,还提供多模态支持、参数调优和流程定制能力,确保系统在性能、可扩展性和隐私性上的平衡。
市面这么多框架,怎么选?
RAG 框架种类繁多,从国际知名的 LangChain 到国内新兴的 Dify,各有千秋。为帮助读者准确决策,我们选取 Dify、FastGPT、RAGFlow 和 LangChain 进行深入分析和对比。以下将分析其特点、优势与不足,并结合适用行业和场景提供建议。
1. Dify:低代码快速开发的 LLM 平台
- 特点
Dify 是一个开源 LLM 应用开发平台,RAG 功能集成于其核心模块,提供拖拽式界面,支持知识库构建和问答生成。
- 优势
- 低代码开发
通过直观的 Web UI,非技术用户也能快速上手,支持文本和 PDF 文件上传,内置 OCR 可处理简单图片(需配合多模态 LLM,如 LLaVA),部署 RAG 应用仅需数分钟。
- 集成性强
兼容主流 LLM(OpenAI、Anthropic、通义千问)和向量数据库(Chroma、Weaviate),支持基础参数调整,如嵌入模型选择(Hugging Face 的 BGE、BCE 等)、检索 Top-K(默认 5,可调至 20)、生成温度(0.0-1.0)。
- 云+本地灵活
:社区版免费自托管,付费云服务提供额外支持,支持单轮问答和简单多轮对话(上下文窗口最大 4k 令牌)。
- 低代码开发
- 缺点
- 多模态能力有限
Excel 需预转为 CSV,复杂表格和多层嵌套文档解析能力不足,图片处理依赖外部模型。
- 定制化受限
模块化设计限制深度调整,高级参数(如分片策略、向量维度)需通过 API 修改,缺乏复杂检索策略(如重排序、语义路由)。
- 检索精度一般
依赖外部嵌入模型,问答流程仅支持简单上下文管理(基于最近 3 轮历史),生成质量受限于接入的 LLM API。
- 多模态能力有限
- 适用行业与场景
- 教育
快速开发课程问答助手。
- 电商
构建客服机器人回答常见问题。
- 中小企业
低成本上线 AI 解决方案。
- 教育
2. FastGPT:轻量高效的知识库问答工具
- 特点
FastGPT 是一个开源平台,专注于知识库问答,提供可视化工作流,支持文档上传和自动化 QA 生成。
- 优势
- 简单易用
可视化界面和自动化预处理降低上手难度,支持文本、PDF 和简单表格(CSV),内置 QA 分割工具提升答案针对性。
- 轻量高效
针对中小规模数据优化,资源占用低,参数配置包括分片大小(默认 512 字符,可调至 2048)、检索数量(默认 3,可调至 10)。
- 知识库特化
支持多轮对话和上下文关联(最大 8k 令牌),开源免费,社区活跃。
- 简单易用
- 缺点
- 多模态短板
图片需手动提取文本,Excel 仅支持简单表格,暂无内置多模态 LLM 支持。
- 扩展性有限
不支持分布式部署,问答流程较为线性(缺乏动态分支或 Agent 协作),高并发场景表现不佳。
- 生成能力依赖
推理质量受限于底层 LLM,参数调整深度有限。
- 多模态短板
- 适用行业与场景
- 客服
构建 FAQ 问答机器人。
- 教育
基于教材生成知识问答。
- 小型企业
管理内部文档,提供自助查询。
- 客服
3. RAGFlow:深度文档理解的高精度引擎
- 特点
RAGFlow 是一个开源 RAG 框架,专注于复杂文档的检索与理解,支持多模态输入和可视化调试。
- 优势
- 深度文档处理
内置 DeepDoc 引擎,支持图片(OCR 提取文本)、PDF、Excel 和网页的智能解析,能处理多列 PDF 和嵌套表格,近期版本(v0.17.2)新增多模态 LLM 支持。
- 高精度检索
提供可视化分块和引用追踪,参数调整丰富(分片策略、嵌入模型如 BGE、检索阈值 0.7-0.9、重排序 PageRank、上下文窗口 16k 令牌),确保结果相关性。
- 开源自托管
免费部署,数据隐私有保障,支持 GPU 加速,问答流程支持动态检索(如 GraphRAG)和模板定制。
- 深度文档处理
- 缺点
- 上手门槛较高
需 Docker 和依赖管理,配置复杂,对非技术用户不够友好。
- 生态较小
社区和插件支持不如 LangChain,扩展功能需自行开发。
- 资源需求高
处理大文档需 GPU 支持,硬件要求较高。
- 上手门槛较高
- 适用行业与场景
- 法律
处理合同和案例文档。
- 医疗
解析医学报告和文献。
- 制造业
管理技术手册和设备说明。
- 法律
4. LangChain:高度灵活的 RAG 全能框架
- 特点
LangChain 是全球领先的 RAG 框架,采用模块化架构,支持多种向量数据库、嵌入模型和 LLM。
- 优势
- 高度灵活
支持自定义检索器和链式逻辑,兼容文本、PDF、Excel(需转为 CSV/JSON)、图片(需扩展)和网页,参数调整包括分片大小(默认 1000 字符)、嵌入维度(768-4096)、检索策略(混合搜索、重排序)、上下文长度(最大 128k 令牌)。
- 生态丰富
集成众多 LLM 和数据库,问答流程支持多轮对话、Agent 协作和复杂检索(如 LangGraph),社区庞大。
- 持续更新
紧跟技术前沿,开源免费,开发成本可控。
- 高度灵活
- 缺点
- 学习曲线陡峭
需 Python 编程能力,多模态支持需手动集成(如 pdf2image、Tesseract)。
- 配置繁琐
功能强大但需优化,效果依赖底层组件。
- 性能依赖外部
多模态和高级功能需额外调优。
- 学习曲线陡峭
- 适用行业与场景
- 金融
处理复杂报表和投资分析。
- 科技
开发创新型 AI 应用。
- 游戏
构建动态对话系统。
- 金融
全面对比
没有完美的框架,最有最适合项目和场景的选择,希望这篇文章对于怎么选择适合您的RAG框架,有所帮助:
- 快速上线,非技术团队
选 Dify,低代码设计和集成性适合教育、电商。
- 轻量问答,小型项目
选 FastGPT,简单高效,满足客服和教育需求。
- 复杂文档,高精度需求
选 RAGFlow,多模态和检索能力适配法律、医疗。
- 深度定制,技术驱动
选 LangChain,灵活性和生态支持金融、科技。
结语
RAG 框架是大语言模型落地的重要支柱,而 Dify、FastGPT、RAGFlow 和 LangChain 在功能和场景上各有专长。初学者可从 Dify 或 FastGPT 起步,快速体验 RAG;文档密集型需求选 RAGFlow;技术团队则可挑战 LangChain。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓