基于MATLAB改进的模拟退火优化遗传算法求解多式联运运输问题

233 篇文章 ¥59.90 ¥99.00
本文提出了一种基于MATLAB的改进模拟退火优化遗传算法,结合两种算法优点,有效解决多式联运路径规划和运输调度问题,提高全局搜索和局部优化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于MATLAB改进的模拟退火优化遗传算法求解多式联运运输问题

摘要:
多式联运是一种重要的物流运输模式,在实际应用中,如何合理优化多式联运的路径规划和运输调度是一个具有挑战性的问题。本文提出了一种基于MATLAB的改进模拟退火优化遗传算法,用于求解多式联运运输问题。通过结合模拟退火算法和遗传算法的优点,提高了算法的全局搜索能力和局部优化能力。文章详细介绍了算法的设计思想和实现步骤,并给出了MATLAB源代码。通过实验验证,该算法能够有效地求解多式联运运输问题,得到较优的运输路径和调度方案。

关键词:多式联运,路径规划,运输调度,模拟退火,遗传算法

  1. 引言
    多式联运是指利用不同的运输方式(如公路、铁路、水路等)在运输过程中相互衔接,形成一个统一的运输体系。多式联运具有运输距离短、成本低、运输效率高等优势,因此在现代物流中得到广泛应用。然而,由于多式联运涉及多个运输方式、多个节点和大量的货物,如何合理规划运输路径和调度运输任务成为一个复杂而具有挑战性的问题。

  2. 多式联运运输问题的数学建模
    在多式联运运输问题中,我们需要考虑的因素包括物流节点、货物流量、运输方式、运输成本、时间窗口等。我们可以将多式联运运输问题建模为一个优化问题,目标是找到最优的运输路径和调度方案,使得总成本最小或总运输时间最短。

  3. 模拟退火

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值