E2E时延组成及计算方法

本文详细解析了网络时延的组成部分,包括确定性的传播时延、处理时延和发送时延,以及随机性的排队时延。传播时延与信道长度和电磁波速度相关,处理时延涉及主机或路由器的处理能力,发送时延取决于数据帧长度和信道带宽。此外,随机性的排队时延是由于网络拥塞造成的不确定性。理解这些概念有助于优化网络性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

网络时延

确定性部分

propagation delay(传播时延)

processing delay(处理时延)

transmission delay(发送时延)

随机性部分


网络时延

网络中一个数据包从一个节点经过一系列交换机转发,发送到另一个节点所经历的时间是端到端时延

其中,分为两个部分:


  • 确定性部分

确定性部分主要由propagation delay(传播时延), transmission delay(发送时延), and processing delay(处理时延)三个部分组成

propagation delay(传播时延)

传播时延是电磁波在信道中传播一定的距离需要花费的时间。

传播时延 = 信道长度(m) / 电磁波在信道上的传播速率(m/s)

信道长度在计算前可以实际确定

传播速率与不同的信道介质有关,真空介质中,电磁波的速度与光速度是一样的,是30万公里/秒

processing delay(处理时延)

主机或路由器在收到分组时要花费一定的时间进行处理,即处理时延。

处理时延与实体相关,高速路由器中的处理延迟一般在微秒数量级或以下。

transmission delay(发送时延)

发送时延是主机或路由器发送数据帧所需要的时间,也就是从发送数据的第一个比特算起,到该帧的最后一个比特发送完毕所需的时间。发送时延也称为传输时延。

发送时延 = 数据帧长度(b) / 信道带宽(b/s)

数据帧长度是发送的网络数据包加上帧头所组成的长度,帧头长度与不同的协议相关。

信道带宽分为两种:

模拟信道:带宽 W=f2-f1 其中f1是信道能够通过的最低频率,f2是信道能够通过的最高频率,两者都是由信道的物理特性决定的。

数字信道:带宽由香农公式计算C=Blog2(1+S/N),S为信号平均功率;N为噪声功率;B为带宽(通频带宽)

https://blog.csdn.net/xiebingsuccess/article/details/104782139,这个文章中介绍了,信道容量、信道带宽基本概念


  • 随机性部分

随机性部分主要是由排队时延导致的

 

### 关于联合角度时延估计的MUSIC算法 多信号分类(MUSIC)算法是一种广泛应用于阵列信号处理中的高分辨率参数估计算法。该方法能够有效地用于联合角度与时延估计,在雷达、声纳以及无线通信等领域具有重要应用价值。 #### MUSIC算法原理概述 MUSIC算法基于子空间理论,通过分解接收数据协方差矩阵来区分信号子空间与噪声子空间。对于给定的空间频谱函数: \[ P_{\text{MUSIC}}(\theta,\tau)= \frac{1}{\sum _{i=1}^{N_s}\left |a_i^H (\theta ,\tau )e_i \right|^2 } \] 其中 \( a_i(\theta,\tau) \) 表示导向矢量,\( e_i \) 是由特征向量组成的基底,而 \( N_s \) 则代表了噪声子空间维数[^1]。 当考虑联合角度和时延估计时,上述模型可以扩展到二维形式,即同时包含入射角θ和平移时间τ两个变量。此时,需要构建相应的双线性映射关系,并利用传感器阵列接收到的数据来进行优化求解。 为了实现这一目标,通常会采用如下步骤: - 构建适用于特定应用场景下的观测模型; - 计算并分析样本自相关矩阵; - 应用奇异值分解技术分离出信号成分; - 寻找使得空间功率谱达到峰值的角度及时延组合作为最终估计结果。 ```matlab % MATLAB code snippet demonstrating joint angle-delay estimation with MUSIC function [angles,delay] = music_jade(X,M,P) % X: received data matrix (snapshots x array elements) % M: number of sensors in the ULA % P: presumed number of sources Rxx = cov(X); % Compute sample covariance matrix [~,V] = eig(Rxx,'vector'); % Perform eigenvalue decomposition Vn = V(:,P+1:end); % Extract noise subspace basis vectors theta_range = linspace(-90,90,181); tau_range = linspace(-Tmax,Tmax,Nt); for i = 1:length(theta_range) for j = 1:length(tau_range) A = steering_vector(M,theta_range(i),tau_range(j)); Pmusic(i,j) = 1/abs(A'*Vn*Vn'*A)^2; end end [peaks,idx] = findpeaks(Pmusic(:)); angles = theta_range(mod(idx-1,length(theta_range))+1)'; delay = tau_range(floor((idx-1)/length(theta_range))+1)'; end ``` 此段MATLAB代码展示了如何使用MUSIC算法执行联合角度和延迟估计的过程。注意这只是一个简化版本的实际工程实现可能更为复杂。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值