【Motion Forecasting】【摘要阅读】Map-Adaptive Multimodal Trajectory Prediction Using Hierarchical GNN

Map-Adaptive Multimodal Trajectory Prediction Using Hierarchical Graph Neural Networks

这项工作于2023年六月发表于IEEE ROBOTICS AND AUTOMATION LETTERS。

Abstract

对自动驾驶车辆周围的交通参与者进行多模态的未来轨迹预测对于自动驾驶汽车在复杂环境当中的行驶至关重要。这是一项具有挑战性的任务,因为自动驾驶汽车周围的某个交通参与者与其它参与者和道路有着复杂的交互关系。

大多数现有的工作会单个代理未来固定数量的多模态轨迹进行预测,与这些工作不同,本文提出了一种地图自适应预测器(map-adaptive predictor),它可以根据代理周围候选车道中心线的数量来自适应地预测数目可变的代理未来轨迹。

本文提出的预测器不仅可以根据候选车道中心线来对代理的未来轨迹进行预测,还会基于场景信息和代理历史运动信息来对代理的未来轨迹进行预测。这三种预测结果都是通过图运算(graph operation)产生的。
在这里插入图片描述
本文方法将驾驶场景建模为包含代理和候选道路中心线两种类型结点的层级异构图。代理结点所包含的信息是根据其历史运动轨迹编码得到的运动特征,而候选道路中心线(Candidate CenterLines,CCLs)包含的是车道中心线的序列特征。
在这里插入图片描述
在驾驶场景图的表示之上,本文方法进一步提出了层级图运算(Hierarchical Graph Operator,HGO),它是一种边掩码策略,用于控制信息在图中的传递,并将编码的场景特征输入到轨迹解码器当中。
在这里插入图片描述
在两个大规模自动驾驶轨迹预测数据集上的结果表明,本文提出的方法是有效的,其性能优于较强的基线方法。

Contributions

  • 本文设计了一种地图自适应的多模态轨迹预测框架,它可以同时对目标代理自身的动态信息、目标代理与邻域代理地交互信息以及局部道路网络进行处理;
  • 对于场景表示以及场景编码,本文方法将复杂的交通场景表示为一张异构层级图。本文提出了一种层级图运算,并引入了边掩码策略,来对场景图进行编码,以用于对目标代理的未来轨迹进行预测;
  • 针对地图自适应的轨迹解码,本文方法提出了基于车道候选中心线的地图自适应多模态解码器,它是基于图操作来实现的。该解码器同时产生三种类型的轨迹预测结果:1)一个基于车道候选中心线的预测轨迹集合,它们对道路的拓扑具有适应性,并且可以泛化到没有见过的车道结构上;2)一条基于场景信息的预测轨迹,基于编码器对整个驾驶场景的归纳结果,使用场景特征对轨迹进行预测;3)一条基于代理历史运动信息的预测轨迹,它仅仅根据代理的历史运动轨迹对未来轨迹进行预测。

Conclusion

在这项工作中,作者提出了一种地图自适应的多模态轨迹解码框架,它可以根据代理的车道候选、场景归纳特征以及代理的历史运动特征对代理的未来轨迹进行预测。

本文方法将驾驶场景表示为一张异构层级图,并设计了一种带有边掩码策略的层级图运算,来对驾驶场景进行编码。

在两项大规模自动驾驶轨迹预测数据集上的实验结果验证了本文方法的有效性。与LaneGCN相比,本文方法将推理时间减少了三分之一。

此外,对于依赖于地图的预测场景,本文方法可以对最极端的场景进行覆盖,即为了考虑,代理的未来运动仅仅会根据其历史运动信息,而不依赖于地图信息。

尽管本文方法可以进行准确的多模态轨迹预测,它的可靠性仍然受车道中心线候选的选择策略的影响。在未来,作者会对CCL选择策略进行拓展,使其可以自适应地对CCL进行选择,并将未来可能行为的概率预测加入到本文所提出的框架当中。作者认为本文提出的层级图运算也可以进行拓展,可以为其加入一个捕捉周围代理交互的阶段。

  • 13
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
交通流量预测是城市交通管理和规划的重要问题之一。传统的方法通常使用统计模型和时间序列分析来进行预测,但它们往往无法捕捉到交通流量数据中的复杂模式和非线性关系。因此,本文提出了一种基于多模态深度学习的混合方法来进行交通流量预测。 该方法将多模态数据(如历史交通流量数据、气象数据、节假日信息等)作为输入,利用深度神经网络来学习数据之间的复杂关系。深度神经网络可以自动提取特征,并通过多层次的非线性变换来捕捉到不同模态数据之间的依赖关系。 具体而言,该方法包括两个主要步骤:模态学习和流量预测。在模态学习阶段,使用深度神经网络对每个模态数据进行特征提取和表示学习,从而获得高维的特征表示。在流量预测阶段,利用这些特征表示来训练一个回归模型来进行交通流量的预测。可以使用不同的深度学习模型,如卷积神经网络和循环神经网络,来处理不同类型的输入数据。 该方法在实际的交通流量数据集上进行了实验,并与传统的方法进行了比较。实验结果表明,该混合方法在预测准确性和稳定性方面具有明显的优势。它能够更好地预测交通流量的变化趋势和峰值时段,并且具有较低的误差率。 综上所述,这种基于多模态深度学习的混合方法为交通流量预测提供了一种创新的解决方案。它可以更好地挖掘和利用不同模态数据之间的关联性,从而提高预测准确性,为城市交通管理和规划提供有价值的决策支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值