漫步数学分析二十一——逐点收敛与一致收敛

对一个函数序列来说,最自然的收敛类型可能是逐点(pointwise)收敛,定义如下。

1 函数序列 fk:ARm,ARn 逐点收敛到 f:ARm ,如果对于每个 xA,fk(x)f(x) 的话(像 Rm 中的序列收敛一样)。如果 fk 逐点收敛到 f ,我们经常写成fkf

这种类型的收敛在某些情况下是非常有用的,而在其他情况下就没有意义了。逐点收敛的主要弊端在于即便函数 fk 是连续的, f 却不一定连续。例如,考虑图1,

fk(x)={0kx+1x1k0x<1k


这里写图片描述
图1

在这种情况下,对于每个 x[0,1],fk(x) 收敛。如果 x0,fk(x)0 (因为 k 足够大时fk(x)=0),而如果 x=0,fk(x)1 (对于所有的 k,fk(0)=1 ),所以极限是

f(x)={01x0x=0

这不是连续函数。

我们如何避免这种情况呢?无论 k 多大,总是存在fk不靠近 f 的点。为了修正这种情况,我们引入一个概念,他能够保证fk一致靠近 f (即,对所有的xA都靠近)。

2 fk:ARm 是一个函数序列,且都满足下列性质:对于每个 ε>0 ,存在一个 N 使得kN意味着对所有的 xA 不等式 fk(x)f(x)<ε 成立。在这个条件下,我们说 fk 一致收敛到 f 并写作fkf

条件 fk(x)f(x)<ε 意味着 fk f 邻域ε的任何地方。我们将 fk 看成 f 的一条彩带,左右宽度为ε,如图2


这里写图片描述
图2

也许另一个例子会更好理解。考虑 R 上的序列

fk(x)={01x<kxk

(k=1,2,3,) ,那么 fk0 ,因为对于每个 xR ,当 k 充分大时(k>x) fk(x)=0 。然而, fk 不会一致收敛到零,因为无论 k 多么大,总会存在点x使得 fk(x)0 不那么小。

通过观察可以看出,如果 fkf (一致),那么 fkf (逐点)。这是因为对任意 xA,ε>0 ,我们有一个 N 使得kN时, fk(x)f(x)<ε ,也就是 fk(x)f(x) 。对于函数级数,我们可以定义同样的定义。

3 我们说级数 Σk=1gk 逐点收敛到 g 并写成Σk=1gk=g,如果序列 skΣki=1gi 逐点收敛到 g 。另外,我们说级数Σk=1gk一致收敛到 g ,如果skg。对于一个序列 fk (或者级数 Σgk ),我们说 fk (或 Σgk )一致收敛,如果存在一个一致收敛的函数的话。

一致收敛的第一个基本性质是它与连续函数的关系,如下面定理所述。

1 fk:ARm 是连续函数并且假设 fkf (一致),那么 f 是连续的。

因此,一致连续是一个很强的条件,它能够保证连续函数序列的极限函数是连续的。从前面的实例中不难理解这个结论。

1 如果 gk:ARm 是连续的且 Σk=1gk=g (一致),那么 g 是连续的。

通过将定理1应用到部分和序列上即可得出推论。

1 fn(x)=(sinx)/n,fn:RR ,说明当 n 时, fn0 (一致)。

我们必须说明当 n |fn(x)0|=|fn(x)| 变得越来越小,且与 x 无关。但是|fn(x)|=|sinx|/n1/n,当 n 时它变得越来越小且与 x 无关。

2说明 sinx 的级数

sinx=xx33!+x55!

一致收敛, 0xr

我们必须说明

sn(x)=k=0n(1)kx2k+1(2k+1)!

一致收敛到 sinx 。为此,估计下面的差:

|sn(x)sinx|=k=n+1(1)kx2k+1(2k+1)!k=n+1(r)2k+1(2k+1)!

但是当 n 时,上面给除了许多 0 的数且与 x 无关,因为它是收敛级数的尾部,所以这个收敛是一致的。注意,从这个例子可以看出sinx的连续性,而这个结论我们是早就知道的。


这里写图片描述
图3

3 fn(x)=xn,0x1 fn 一致收敛吗?

首先我们确定点的极限。对于所有的 n 我们有fn(0)=0,如果 x<1,fn(x)0 ,但是对于所有的 n,fn(1)=1 ,因此 fn 逐点收敛到

f(x)={01x1x=1

因为极限不是连续的,所以它不是一致收敛的。(图3)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值