对一个函数序列来说,最自然的收敛类型可能是逐点(pointwise)收敛,定义如下。
定义1
函数序列
fk:A→Rm,A⊂Rn
逐点收敛到
f:A→Rm
,如果对于每个
x∈A,fk(x)→f(x)
的话(像
Rm
中的序列收敛一样)。如果
fk
逐点收敛到
f
,我们经常写成
这种类型的收敛在某些情况下是非常有用的,而在其他情况下就没有意义了。逐点收敛的主要弊端在于即便函数
fk
是连续的,
f
却不一定连续。例如,考虑图1,
图1
在这种情况下,对于每个
x∈[0,1],fk(x)
收敛。如果
x≠0,fk(x)→0
(因为
k
足够大时
这不是连续函数。
我们如何避免这种情况呢?无论
k
多大,总是存在
定义2
令
fk:A→Rm
是一个函数序列,且都满足下列性质:对于每个
ε>0
,存在一个
N
使得
条件
∥fk(x)−f(x)∥<ε
意味着
fk
在
f
邻域
图2
也许另一个例子会更好理解。考虑
R
上的序列
(k=1,2,3,…)
,那么
fk→0
,因为对于每个
x∈R
,当
k
充分大时(
通过观察可以看出,如果
fk→f
(一致),那么
fk→f
(逐点)。这是因为对任意
x∈A,ε>0
,我们有一个
N
使得
定义3
我们说级数
Σ∞k=1gk
逐点收敛到
g
并写成
一致收敛的第一个基本性质是它与连续函数的关系,如下面定理所述。
定理1 令 fk:A→Rm 是连续函数并且假设 fk→f (一致),那么 f 是连续的。
因此,一致连续是一个很强的条件,它能够保证连续函数序列的极限函数是连续的。从前面的实例中不难理解这个结论。
通过将定理1应用到部分和序列上即可得出推论。
解:
我们必须说明当
n→∞
时
|fn(x)−0|=|fn(x)|
变得越来越小,且与
x
无关。但是
一致收敛, 0≤x≤r 。
解:
我们必须说明
一致收敛到
sinx
。为此,估计下面的差:
但是当
n→∞
时,上面给除了许多
→0
的数且与
x
无关,因为它是收敛级数的尾部,所以这个收敛是一致的。注意,从这个例子可以看出
图3
例3: 令 fn(x)=xn,0≤x≤1 , fn 一致收敛吗?
解:
首先我们确定点的极限。对于所有的
n
我们有
因为极限不是连续的,所以它不是一致收敛的。(图3)