【智慧交通案例分享】南方高铁激光雷达路端轨道异物侵限智能监测系统

目录

前言

系统组成

系统特点

设备参数

系统设备参数

激光雷达参数

Coovally AI模型训练与应用平台 

1.开源模型

2.开源数据集 


前言

列车轨道异物侵限多发于公路跨铁路地段、公路与铁路并行紧邻地段、施工路段附近、铁路正线以及山区中可能发生坍塌落石地段,具有突发性、无规律性和不可预测性的特点。针对不明掉落物、人员入侵等严重威胁到轨道交通运营安全的问题。

传统的轨道侵限异物入侵检测方法主要依赖于人工巡检和传感器监测,但这些方法存在一些局限性。首先,人工巡检需要大量的人力和时间投入,效率低下且容易出现疏漏。其次,传感器监测技术虽然能够实时监测轨道状态,但在异物入侵检测方面存在一定的局限性,如对小尺寸、低对比度的异物检测效果不佳。因此,需要一种更加高效准确的轨道侵限异物入侵检测方法来提高轨道交通系统的安全性和运营效率。

深度学习作为一种基于人工神经网络的机器学习方法,具有强大的特征学习和模式识别能力,已经在图像识别、语音识别、自然语言处理等领域取得了显著的成果。基于深度学习的轨道侵限异物入侵检测系统能够通过学习大量的轨道图像数据,自动提取图像特征并进行异物检测,从而实现对轨道侵限异物的准确识别和及时报警。

依托领先的激光雷达感知技术,南方高铁根据轨道异物侵限的特点,推出了可定点安装于轨道路侧的激光雷达轨道线路异物侵限监测系统

本方案设计核心基于激光雷达可快速、准确、大量的获取防护区域里出现的异物的位置点云数据,通过对点云数据进行预处理、匹配视觉传感器,即时精准抓取障碍物的体积和位置信息,并将险情及时通过终端显示软件、报警器等,为驾驶员及时提通报预警信号,从而有效规避事故发生。


系统组成

南方高铁激光雷达路端轨道异物侵限监测系统,根据列车运行环境,可安装于轨道异物侵限多发地段及月台周边,通过对高危区域进行全天时智能监测,及时对异物入侵进行预警,可有效提高险情处理效率。

本系统主要由激光雷达、摄像头、数据采集及处理算法单元、工控机处理器模块、信息分发传输核心控制单元、告警系统及远端服务器组成。通过雷达获取轨道的点云数据后进行算法分析和处理。首先采集并保存背景信息,系统启动后刷新探测区域内的点云并与背景信息比对,通过比对信息差异,提取差异点进行障碍物尺寸信息分析。当尺寸大于阈值时,系统发出报警,实现从监测-数据处理-报警的整体系统搭建。

系统架构图如下:

(1)激光雷达:为系统核心传感器,激光雷达能实时扫描探测铁轨安全监测区域内障碍物,实时输出环境的高精度三维点云数据,最远测距可达200m,100m范围内可探测出20*20*20cm的物体。

(2)摄像头:通过标定与激光雷达世界坐标系参数,为安全区域内激光雷达探测到的障碍物体提供融合检测数据,并能进一步的提供障碍物更真实的图像信息。

(3)数据采集及处理算法单元:为核心算法模块,包括激光雷达和摄像头图像信息的实时采集与预处理;根据预设的安全监测范围实时处理该范围内激光雷达点云动态目标数据;根据雷达精确探测的距离和方位融合摄像头视觉模块对障碍物图像信息的进一步提取和上报。

(4)工控机处理器模块:为整个系统及算法运行硬件平台,提供各种传感器及信号传输的接口,同时高性能处理器保证对大数据处理和异物报警算法运算实时性的基础。

(5)信息分发传输核心控制单元:将设置监控范围内有异常的目标告警信息进行分发上报处理。

(6)告警系统:一般有远程告警灯组成启动远距离告警作用。

(7)远端服务器模块:即接受告警信号的远程调度中心或者工作站。


系统特点

(1)非接触采集安全性高激光扫描技术采用非接触扫描目标方式进行测量,对扫描目标物体不需进行表面处理,直接采集物体的位置点云,数据精准可靠,非常适合对远距离异物进行探测并警戒。

(2)快速及采样率高激光雷达数据获取率可达每秒数十万点。

(3)实时、动态、主动性系统扫描均是在实时动态环境中边采集边处理模块,且对场景主动式扫描,提前获知前方轨道险情,可争取更多紧急制动时间。

(4)高分辨率、高精度、高密度激光雷达可在厘米级精度下获取海量数据,可以进行高密度的重复角度重叠采集。

(5)抗光强度高、不受环境干扰激光雷达为脉冲激光,抗光强度高,不受自然光以及高亮度的会车对射光影响,同时防护等级达IP67。

(6)搭配视觉传感器进行数据融合视觉传感器增强了检测的色彩标定等信息的获取,使目标信息更加明确和细化,提供系统安全冗余度。

(7)系统硬件集成度高激光雷达、摄像头、工控机、告警灯、信息分发传输单元等硬件可以集中在路侧整体机柜,十分方便迅速部署和迁移。


设备参数

系统设备参数

激光雷达参数


Coovally AI模型训练与应用平台 

Coovally整合30+国内外开源社区1000+模型算法以及各类开源数据集,如果你也想进行关于铁路轨道缺陷、入侵等数据模型训练,直接登录Coovally,数据集一键分享,开源算法直接下载使用!

从项目研发流程上解决和加速AI模型训练与部署,协助用户利用开源模型或集成自研模型来快速构建AI解决方案。

1.开源模型

平台已部署1000+模型算法

2.开源数据集 

可一键免费分享给用户

数据集标签查看
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值