机器学习理论梳理2 : KNN K近邻分类模型

K近邻模型是监督学习中的判别式模型,用于分类问题。通过计算新实例与已有数据集的距离,选择最近的K个邻居进行分类。K值的选择和距离度量对算法性能至关重要。KNN的缺点是随着数据量增加,计算成本增加。解决策略包括数据降维和使用类中心点代替所有实例计算距离,以提高效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文主要梳理KNN,K近邻模型的基本原理。

从机器学习的大分类来看,K近邻模型属于监督学习中的一种判别式模型,常用于分类问题。初始的数据集中,包含了已经分类标签好的数据。一句话来说,K近邻模型就是通过计算实例与现有数据集中所有数据的数学距离,从中挑选出K个最近的例子。在这K个例子中,占据大多数的分类就是新的实例的分类。

在这里插入图片描述
在使用K近邻法时,需要注意的就是定义好数学意义上的距离(一般使用欧拉距离)以及选取合适的K值。这个方法作为分类器的优势在于实现简单,没有先行的假设,但其局限性也很明显,随着样本以及数据量的上升,运算成本也是同比例地增加。

有两种主要的思路,来加速K近邻法的运算。首先我们可以利用PCA主成分分析,或者LDA线性判别分析来对原始数据进行降维处理,降维后再计算向量之间的距离就可以提高效率。

其次,在实现过程中,我们放弃计算新的实例和每一个数据集中的例子的距离,而是先计算各个分类中所有已知数据的平均值,通过新的实例与这个平均值之间的距离来进行分类,虽然一定程度牺牲了分类的准确性提高了不可避免的误差,但却可以大幅度加速我们算法运行的速度。
d E

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值