keras实现嘴唇图像autoencoder

本文分享了我在silent speech 项目过程中实现的基于嘴唇图像数据集的autoencoder自编码器。输入输出都是 64 ∗ 64 64*64 6464的嘴唇灰度图。自编码器由编码解码两个部分构成,同时实现了利用checkpoint在每个epoch运算时,自动保存测试集loss更小的模型。

数据集共包含84679张图片,其中前68728张图片作为训练集,后15951张图片作为测试集。

在这里插入图片描述

import tensorflow as tf
from tensorflow.keras import layers
from tensorflow import keras
import numpy as np
from tensorflow.keras.callbacks import ModelCheckpoint
from tensorflow.keras import optimizers
from matplotlib import pyplot as plt
from tensorflow.keras import Input
from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, concatenate, Flatten, Conv2DTranspose, UpSampling2D
from tensorflow.keras.models import Model


def autoencoder_lips():
    input_img = Input(shape=(64, 64, 1))
    # encoding
    conv1 = Conv2D(filters=16, kernel_size=(5, 5), activation
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值