R语言数据分析:谱系图与层次聚类分析

27 篇文章 ¥59.90 ¥99.00
本文详细介绍了如何使用R语言进行谱系图和层次聚类分析,通过iris数据集演示了欧几里得距离计算、hclust函数的应用,以揭示数据点间的相似性和差异性,以及聚类关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R语言数据分析:谱系图与层次聚类分析

谱系图和层次聚类分析是数据分析中常用的技术,可以帮助我们了解数据之间的相似性和差异性,以及数据点之间的关系。在R语言中,我们可以使用现成的函数来生成谱系图和层次聚类分析,下面将介绍如何使用R语言进行谱系图和层次聚类分析。

  1. 谱系图

谱系图是一种树状图,用于表示数据点之间的相似性和差异性。在R语言中,我们可以使用“hclust”函数来生成谱系图。

首先,我们需要准备一些数据。以iris数据集为例,我们可以使用以下代码来加载数据集:

data(iris)

接下来,我们可以选择使用哪些变量来生成谱系图。在本例中,我们将使用前四个变量(Sepal.Length,Sepal.Width,Petal.Length和Petal.Width)。我们可以使用以下代码来创建一个名为“dist”的矩阵,该矩阵包含每个数据点之间的欧几里得距离:

dist <- dist(iris[,1:4])

然后,我们可以使用“hclust”函数来生成谱系图。以下是生成谱系图的完整代码:

data(iris)
dist <- dist(iris[,1:4])
hc <- hclust(dist)
plot(hc)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值