一、定义
(一)过拟合:一个假设在训练数据上能够获得比其他假设更好的拟合, 但是在训练数据外的数据集上却不能很好地拟合数据,此时认为这个假设出现了过拟合的现象。(模型过于复杂)
(二)欠拟合:一个假设在训练数据上不能获得更好的拟合, 但是在训练数据外的数据集上也不能很好地拟合数据,此时认为这个假设出现了欠拟合的现象。(模型过于简单)
二、欠拟合原因以及解决办法
(一)原因:学习到数据的特征过少
(二)解决办法:增加数据的特征数量
三、过拟合原因以及解决办法
(一)原因:原始特征过多,存在一些嘈杂特征, 模型过于复杂是因为模型尝试去兼顾各个测试数据点。
(二)解决办法:
1、进行特征选择,消除关联性大的特征(很难做)
2、交叉验证(让所有数据都有过训练)
3、正则化(尽量减小高次项特征的影响)(了解)
四、L2正则化
(一)作用:可以使得W的每个元素都很小,都接近于0。
(二)优点:越小的参数说明模型越简单,越简单的模型则越不容易产生过拟合现象。
五、带有正则化的线性回归-Ridge的API
sklearn.linear_model.Ridge
六、Ridge的语法
sklearn.linear_model.Ridge(alpha=1.0)具
过拟合以及欠拟合
最新推荐文章于 2024-09-05 16:49:08 发布
本文介绍了过拟合和欠拟合的概念,过拟合是模型过于复杂导致在训练数据外表现不佳,欠拟合则是因为模型过于简单。欠拟合解决方案包括增加特征数量,过拟合解决方法涉及特征选择、交叉验证和正则化。L2正则化有助于防止过拟合,通过减小模型参数。文章还展示了Ridge回归的使用示例,它是带有L2正则化的线性回归,能提供更稳定的参数估计。
摘要由CSDN通过智能技术生成