目前支持的移动端布署方式
1. Termux 安装法
优点: 可以在手机上安装 Termux,然后通过该工具安装 Linux 系统,并下载和运行大模型(如 Ollama、Llama 3和Phi-3等)。
缺点: 安装过程复杂,涉及大量命令行操作,需要在终端中进行设置和使用,使用体验差,适合技术专家或开发者。
具体安装过程参考: https://www.53ai.com/news/qianyanjishu/1795.html
总结: 比较适合有一定技术背景的用户,体验不如其他方法友好。
2. MLC
优点: 支持 GPU 调用,可能提升计算速度,较为推荐的方案。
AppStore可下载,安卓上使用方法参考:在手机上运行大模型(使用MLC-LLM) · Valdanitooooo/knowledge-hub · Discussion #66 · GitHub[1] ,文档地址:Introduction to MLC LLM — mlc-llm 0.1.0 documentation[2]
缺点: 使用旧手机时,容易出现黑屏等问题,可能是由于占用过多 GPU 资源。新手机可能会有所改善。
总结: 适合较新型号的手机,老旧设备可能体验较差。
3. Maid APP 安装法
优点: 通过安装 Maid APP,可以直接使用大模型,安装较为简便。
缺点: 需要科学上网,运行速度非常慢,使用体验差,不推荐使用。
总结: 虽然安装简便,但性能和速度的限制使得这不是一个理想选择。
4. PocketPal
优点: 国外的一个应用,运行方便,速度较快,适合大多数用户使用。开源,这是重点!!!
缺点: 安装包只能在谷歌商店下载,需要特殊网络才能使用,且国内用户访问速度慢
总结: 瑕不掩瑜,PocketPal AI是一款比较好的选择。
接下来,我们将重点就PocketPal AI进行更为详细的介绍。
关于PocketPal AI 📱🚀
PocketPal AI 是一款袖珍型的 AI 助手,基于小型语言模型(SLMs)运行,直接在您的手机上运行。它支持 iOS 和 Android,允许您在无需互联网连接的情况下与各种 SLMs 进行互动。
特点
•离线 AI 助手:直接在设备上运行语言模型,无需互联网连接。•模型灵活性:下载并切换多个 SLMs,包括 Danube 2 和 3、Phi、Gemma 2 和 Qwen。• 自动卸载/加载:当应用在后台时,自动管理内存,通过卸载模型来节省空间。 •推理设置:自定义模型参数,如系统提示、温度、BOS 标记和聊天模板。 • 实时性能指标:查看每秒生成的令牌数量和每个令牌的毫秒数。
安装
iOS
从 App Store 下载 PocketPal AI: 在 App Store 下载[3]
Android
通过 Google Play 获取 PocketPal AI: 在 Google Play 获取[4]
可用模型
PocketPal AI 预配置了一些流行的 SLMs(小型语言模型):
•Danube 2 和 3•Phi•Gemma 2•Qwen
在使用之前,模型需要先下载。您可以直接从应用程序中下载并使用这些模型,还可以加载任何其他您喜欢的 GGUF 模型!
使用 PocketPal AI
有关如何使用 PocketPal AI 的详细指南,请查看 入门指南[5]。
下载模型
•点击汉堡菜单•进入“模型”页面•选择您需要的模型并点击下载
加载模型
下载后,点击 加载 按钮将模型加载到内存中。现在,您可以开始与模型对话!
小贴士
在 iOS 设备上,默认启用了 Apple 的 GPU API(Metal)。如果您遇到性能问题,可以尝试禁用它。
自动卸载/加载
为了保持设备运行顺畅,PocketPal AI 可以自动管理内存使用:
•在模型页面启用“自动卸载/加载”(默认启用)•当应用程序在后台时,它会卸载模型•当您返回时,模型会重新加载(对于较大的模型,可能需要等待几秒钟)
高级设置
点击箭头图标访问高级 LLM 设置,例如:
•温度•BOS 标记•聊天模板选项•等等
最后,让我们开始聊天!
一旦模型加载完成,进入“聊天”页面并开始与加载的模型对话!
生成性能指标也会显示。如果感兴趣,可以通过观察聊天气泡查看实时性能指标:每秒令牌数和每个令牌的毫秒数。
复制文本
重要提示:目前,我还没有找到一种简单的方法,可以在保留文本格式的同时,从生成的响应中选择并复制文本,尤其是 Markdown 格式的支持。
在此期间,以下是复制文本的当前选项:
•段落级复制:长按特定段落以复制其内容。•全部响应复制:点击文本气泡底部的复制图标以复制整个 AI 生成的响应。
我知道这些选项可能不太理想,这也是我在使用其他应用时遇到的困扰。复制文本部分内容的困难,曾是类似 ChatGPT 等聊天应用中的一个特别令人烦恼的问题。
开发者们:PocketPal AI 是使用 React Native 构建的。找到一个平衡文本选择与保留格式(特别是 Markdown 支持)的方法对我来说一直很困难。如果您有相关经验,我非常愿意听听您的意见!
源码及安装布署地址
代码及详细的开发安装与布署地址:https://github.com/a-ghorbani/pocketpal-ai
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓