在使用大型语言模型时,合理地拆解任务可以显著提升模型的回答质量。
比如:下面这个Prompt会比直接问 “如何解决共享单车问题” 要好很多。
首先,列出在城市中推广共享单车需要解决的主要问题;
然后,针对每个问题提出可能的解决方案。
那如何把大任务拆成大模型可以做的小任务?
一、拆解注意项
拆解任务时需要注意:
明确目标
确保每个子任务都有清晰的指向,避免模糊不清。
逻辑顺序
按照任务的自然流程或逻辑关系进行拆解,使模型能够逐步推理。
简洁明了
使用简洁的语言,避免复杂的句式和不必要的信息。
避免歧义
确保指令清晰,减少模型可能产生的误解。
分步提问
如果任务复杂,建议逐步提问,而非一次性提出所有要求。
二、拆解方法
不同的任务拆解方法不一样
1. 步骤分解法
将复杂任务按照完成步骤进行拆解,逐步引导模型完成。
任务
写一篇关于环保的文章。
拆解
- 列出当前主要的环境问题。
- 分析这些问题的成因。
- 提出可能的解决方案。
- 总结环保的重要性。
2. 要素分解法
将任务按照关键要素或组成部分进行拆解。
任务1: 设计一款新手机。
拆解
- 确定目标用户群。
- 定义核心功能和特色。
- 设计外观和用户界面。
- 制定营销策略。
任务2: 如何提高公司员工的生产力?
拆解
- 工作环境:
改善办公环境,提高舒适度
提供必要的办公设备和工具
优化工作流程,减少不必要的环节 - 员工培训:
组织多样化的培训课程,提升员工技能
提供职业发展机会,激发员工潜力 - 绩效考核:
建立科学合理的绩效考核体系
提供及时有效的反馈,帮助员工改进 - 企业文化:
建立积极向上的企业文化
鼓励员工之间的沟通与合作
3. 角色分解法
从不同角色或视角出发,分析和解决问题。
任务1:改善公司内部沟通。
拆解
- 从员工角度,识别沟通障碍。
- 从管理层角度,分析信息传递问题。
- 提出员工培训和管理改进方案。
任务2: 推广共享单车需要解决的主要问题
拆解
- 用户端问题
如何吸引用户首次尝试?
如何提高用户的使用频率?
如何保证用户的骑行安全?
如何解决用户在骑行过程中遇到的问题(如车辆故障、乱停乱放等)? - 运营端问题
如何合理规划车辆投放地点?
如何维护车辆的良好状态?
如何防止车辆被盗或损坏?
如何处理用户投诉和反馈? - 城市管理问题
如何与城市交通部门合作,合理规划自行车道?
如何解决共享单车乱停乱放的问题?
如何平衡共享单车的发展与城市环境保护?
三、示例
问题:如何在城市中推广共享单车?
拆解步骤
1、列出在城市中推广共享单车需要解决的主要问题:
- 基础设施不足:缺乏完善的自行车道和停车点。
- 用户体验差:车辆维护不及时,影响使用。
- 监管困难:车辆乱停乱放,影响市容市貌。
- 安全隐患:交通安全意识不足,事故频发。
- 竞争压力:市场上已有多家共享单车企业。
2、针对每个问题提出可能的解决方案:
基础设施不足:
- 与政府合作,规划和建设专用自行车道。
- 设置指定的共享单车停车区域,方便取用。
用户体验差:
- 建立定期维护机制,确保车辆性能良好。
- 引入智能检测系统,及时发现和处理故障车辆。
监管困难:
- 利用GPS和电子围栏技术,规范停车区域。
- 建立信用体系,对违规行为进行惩罚。
安全隐患:
- 开展安全骑行宣传,提高用户安全意识。
- 提供免费的头盔和安全装备租借服务。
竞争压力:
- 差异化服务,提供更优质的用户体验。
- 推出会员制度和优惠活动,增加用户粘性。
四、总结
合理的任务拆解有助于大型语言模型更好地理解和完成复杂任务。
通过明确目标、逻辑分步和选择合适的拆解方法,可以提升模型的回答质量和实用性。在与模型交互时,注意指令的清晰度和逻辑性,将有助于获得更满意的结果。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓