上一篇给大家总结了基础基础篇脑图,今天继续给大家带来开发篇 脑图下载地址: https://github.com/PulsarPioneers/llm-learn/blob/main/assets/llm-learn-dev-mind.svg

一、开发流程
基于大模型的开发通常遵循以下流程:
需求分析
- 明确应用场景,如对话系统、文本生成、代码补全或知识问答等。
- 确定性能要求,如响应速度、生成质量、领域适配性等。
模型选择与评估
- 选择适合的开源或商业大模型(如LLaMA、Grok、ChatGPT等)。
- 评估模型在特定任务上的表现(如BLEU、ROUGE、F1分数等)。
数据准备
- 收集领域特定数据集(如医疗、法律、编程等)。
- 清洗数据,确保数据质量(去噪、格式统一)。
- 准备指令微调(Instruction Tuning)或提示工程(Prompt Engineering)所需数据。
模型微调与优化
- 使用LoRA、QLoRA等参数高效微调方法适配特定任务。
- 优化推理速度(如量化、蒸馏、缓存机制)。
- 针对多模态需求,集成图像、语音等输入。
开发与集成
- 构建前端界面(如Web、移动端)或后端API。
- 集成大模型到现有系统(如企业ERP、客服系统)。
- 实现实时流式输出或批处理功能。
测试与部署
- 进行单元测试、集成测试,验证模型输出稳定性。
- 部署到云端(AWS、Azure)或本地服务器。
- 监控模型性能,设置错误回退机制。
迭代优化
- 收集用户反馈,持续改进模型输出。
- 更新数据集,定期重新微调模型。
- 跟踪最新技术动态,升级模型架构或框架。
二、开发框架
以下是常用的开发框架与工具,涵盖模型训练、推理和应用开发:
模型训练与微调
- Hugging Face Transformers: 提供预训练模型和微调工具,支持多种任务。
- PyTorch/TensorFlow: 深度学习框架,适合定制化开发。
- DeepSpeed: 微软开源的分布式训练工具,优化大模型训练效率。
- LoRA/QLoRA: 参数高效微调框架,降低计算成本。

推理与部署
- vLLM: 高性能推理引擎,支持快速推理和分布式部署。
- Triton Inference Server: NVIDIA的推理服务器,适合生产环境。
- FastAPI/Flask: 轻量级API框架,用于快速构建模型服务。
- ONNX: 模型格式标准化工具,优化跨平台部署。
提示工程与交互
- LangChain: 构建复杂对话系统,支持工具调用和记忆机制。
- LlamaIndex: 用于构建知识增强型应用(如RAG)。
- Gradio/Streamlit: 快速开发交互式Web界面,展示模型功能。

多模态支持
- CLIP: 用于处理图像-文本任务。
- Whisper: 语音转文本模型,适合语音交互。
- Stable Diffusion: 图像生成模型,增强多模态应用。

三、开发方向
基于大模型的开发方向多样,以下是一些主要方向:

对话系统
- 开发智能客服、虚拟助手(如Grok、Siri)。
- 实现多轮对话、上下文记忆和个性化响应。
文本生成
- 自动生成文章、新闻摘要、广告文案。
- 支持创意写作,如小说、剧本生成。
代码辅助
- 开发代码补全工具(如GitHub Copilot)。
- 实现代码审查、自动化测试用例生成。
- Text 2 SQL
知识问答与搜索
- 构建企业内部知识库问答系统。
- 开发增强型搜索引擎,结合RAG(Retrieval-Augmented Generation)。
教育与培训
- 开发个性化学习助手,提供题目解析和学习计划。
- 实现语言学习、编程教学等交互式教育工具。
医疗健康
- 辅助诊断系统,分析病历并提供建议。
- 开发健康管理助手,监控患者数据并提醒。
金融科技
- 构建智能投顾系统,分析市场趋势。
- 开发欺诈检测模型,识别异常交易。
多模态应用
- 开发图文生成工具,如广告设计、社交媒体内容。
- 实现语音交互系统,结合语音识别与生成。
游戏与娱乐
- 开发AI驱动的NPC(非玩家角色),增强游戏体验。
- 实现互动式剧情生成,动态调整故事线。
自动化与流程优化
- 自动化文档处理,如合同分析、报告生成。
- 优化企业流程,如供应链预测、库存管理。
法律与合规
- 开发合同审查工具,识别法律风险。
- 构建合规监控系统,检测违规行为。
科学研究
- 辅助论文写作,生成文献综述。
- 开发数据分析助手,处理实验数据。
个性化推荐
- 构建内容推荐系统,如新闻、视频、商品。
- 实现用户行为预测,优化营销策略。
环境与可持续发展
- 开发气候模型,预测环境变化。
- 优化能源管理,降低碳排放。
四、总结
基于大模型的开发是一个快速发展的领域,涵盖从需求分析到部署优化的完整流程。开发框架如Hugging Face、LangChain等提供了强大的工具支持,而开发方向则覆盖了对话系统、代码辅助、多模态应用等多个领域。未来,随着模型性能提升和计算成本降低,LLM将在更多行业中实现深度应用。开发者需要关注技术迭代,结合具体场景优化模型与系统,以实现高效、可靠的解决方案。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

三、LLM大模型系列视频教程

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

五、AI产品经理大模型教程

LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
- 
	目标:了解AI大模型的基本概念、发展历程和核心原理。 
- 
	内容: - L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
 
阶段2:AI大模型API应用开发工程
- 
	目标:掌握AI大模型API的使用和开发,以及相关的编程技能。 
- 
	内容: - L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
 
阶段3:AI大模型应用架构实践
- 
	目标:深入理解AI大模型的应用架构,并能够进行私有化部署。 
- 
	内容: - L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
 
阶段4:AI大模型私有化部署
- 
	目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。 
- 
	内容: - L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
 
这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

 
                   
                   
                   
                   
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   642
					642
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            