教你 1 小时搭建属于自己的 AI 知识库,Ollama + MaxKB 超详细教程略

前言

我们经常为海量文档找不到关键内容而烦恼,那么可以使用AI 帮忙轻松检索个人笔记,并且还能优化我们的文章,以我们的风格生成文章。今天,我来教你用 Ollama 和 MaxKB 搭建一个属于自己的 AI 知识库,让你的知识随时为你服务. Ollama 作为轻量级模型管理平台,可以快速安装、运行多种 AI 模型,如 DeepSeek-R1、Llama3 等。本文将手把手教你如何:

✅ 安装 Ollama ✅ 运行 DeepSeek-R1 模型 ✅ 配置 ChatBox 客户端 ✅ 构建 MaxKB 知识库

🖥️ 1. 安装 Ollama:开启你的本地 AI 之旅
✅ 1.1 下载安装 Ollama

开源地址: Ollama 官方文档

下载并解压 Ollama 安装包:

代码语言:javascript

代码运行次数:0

运行

curl -L https://ollama.com/download/ollama-linux-amd64.tgz -o ollama-linux-amd64.tgz
sudo tar -C /usr -xzf ollama-linux-amd64.tgz

安装成功后,/lib 和 /bin 文件夹下将生成相应的文件。

安装完成

安装完成

✅ 1.2 启动 Ollama

代码语言:javascript

代码运行次数:0

运行

ollama serve

查看版本号确认安装是否成功:

代码语言:javascript

代码运行次数:0

运行

ollama -v

查看版本

查看版本

⚙️ 2. 配置 Ollama 服务后台启动
✅ 2.1 创建用户和组

代码语言:javascript

代码运行次数:0

运行

sudo useradd -r -s /bin/false -U -m -d /usr/share/ollama ollama
sudo usermod -a -G ollama $(whoami)
✅ 2.2 配置 Ollama 的 systemd 服务

创建 ollama.service 文件:

代码语言:javascript

代码运行次数:0

运行

sudo nano /etc/systemd/system/ollama.service

添加以下配置:

代码语言:javascript

代码运行次数:0

运行

[Unit]
Description=Ollama Service
After=network-online.target

[Service]
ExecStart=/usr/bin/ollama serve
User=ollama
Group=ollama
Restart=always
RestartSec=3
Environment="PATH=$PATH"
Environment="OLLAMA_HOST=0.0.0.0:11434" # 暴露端口,方便外部访问

[Install]
WantedBy=multi-user.target
✅ 2.3 启动并设置自启

代码语言:javascript

代码运行次数:0

运行

sudo systemctl daemon-reload
sudo systemctl start ollama
sudo systemctl enable ollama

服务配置成功

服务配置成功


🧠 3. 下载并运行 DeepSeek-R1 模型
✅ 3.1 选择合适的 DeepSeek-R1 版本
模型版本参数量内存占用(近似)推理速度(参考)适用场景
DeepSeek-R1 1.5B1.5B~1.2GB(FP16)极快(低端GPU/CPU)轻量任务、嵌入式设备、快速响应
DeepSeek-R1 7B7B~5GB(FP16)快(中端GPU/CPU)本地开发、对话机器人、文本生成
DeepSeek-R1 14B14B~12GB(FP16)中等(高端GPU)高性能需求、复杂推理、代码补全
DeepSeek-R1 32B32B~24GB(FP16)较慢(需高端GPU)专业任务、大规模数据处理、研究

模型地址: https://ollama.com/library/deepseek-r1:1.5b

✅ 3.2 下载并运行模型

代码语言:javascript

代码运行次数:0

运行

ollama run deepseek-r1:1.5b

安装完成后,可以直接开始提问!

模型运行成功

模型运行成功

✅ 3.3 通过 API 进行测试

代码语言:javascript

代码运行次数:0

运行

curl http://192.168.235.131:11434/api/chat -d '{
  "model": "deepseek-r1:1.5b",
  "messages": [
    { "role": "user", "content": "你好" }
  ]
}'


📚 4. Ollama 常用命令汇总
📦 4.1 模型管理
命令作用示例
ollama pull <模型名>下载模型ollama pull deepseek-r1:7b
ollama list查看已安装的模型ollama list
ollama rm <模型名>删除本地模型ollama rm llama3:8b
ollama cp <源模型> <新模型>复制模型(用于自定义)ollama cp deepseek-r1:7b my-r1
💬 4.2 运行与交互
命令作用示例
ollama run <模型名>运行模型并进入交互对话ollama run deepseek-r1:7b
ollama run <模型名> “<提示词>”直接执行单次推理ollama run deepseek-r1:7b “你好!”
Ctrl+D退出交互模式(在交互界面按组合键)
🛠️ 4.3 自定义模型
命令作用示例
ollama create <模型名> -f Modelfile基于 Modelfile 创建自定义模型ollama create my-r1 -f ./Modelfile
ollama show <模型名> --modelfile查看模型的 Modelfile 配置ollama show deepseek-r1:7b --modelfile

💡 5. 安装 ChatBox 客户端

ChatBox 官网: Chatbox AI

下载安装后,你就可以在本地轻松使用 DeepSeek-R1 模型进行交互。

ChatBox 启动成功

ChatBox 启动成功

开始提问

开始提问


📚 6. 构建个人知识库:MaxKB
✅ 6.1 安装并配置 MaxKB

MaxKB 文档: MaxKB 官方文档

按照文档配置 MaxKB 环境,并添加 Ollama 模型。

✅ 6.2 配置模型 API

随意填写 API Key,模型与 Ollama 连接。

添加模型

添加模型

✅ 6.3 创建个人知识库

创建知识库

创建知识库

✅ 6.4 导入文章数据

导入文章

导入文章

✅ 6.5 创建 AI 应用

创建应用

创建应用

✅ 6.6 关联模型与知识库

关联模型

关联模型


📝 7. 使用体验:不同模型效果对比

DeepSeek-R1 1.5B: 响应速度快,但逻辑简单,有点“呆瓜”。 🏆 DeepSeek-R1 32B: 逻辑推理能力更强,回答质量显著提升,适合高端 AI 应用。

模型效果对比

模型效果对比

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

<think>好的,我现在需要帮助用户找到MaxKB的详细使用教程。根据用户的问题,他们之前已经询问过MaxKB的相关信息,现在需要更详细的使用指南。首先,我需要回顾系统提供的引用内容,看看是否有相关的安装和使用步骤。 引用1提到MaxKB是一个基于LLM知识库问答系统,开箱即用,适合嵌入第三方系统,并且是1Panel官方出品。项目地址在gitcode,可能有文档资源。引用2给出了Windows系统下使用Docker启动MaxKB的命令,并提到了参数说明,说明用户可能需要安装Docker并配置路径。引用3和4讨论了本地部署,结合DeepSeek和Ollama,但用户现在主要关注MaxKB本身的使用教程。引用5提到启动文件可能是start.sh或run.py,使用gunicorn或uvicorn启动服务。 用户可能需要从安装到配置再到使用的完整流程。首先应该分步骤指导安装,包括Docker环境和命令行部署。然后是如何访问Web界面,进行系统初始化设置,比如创建管理员账户。接下来是创建知识库,上传文档,可能需要支持多种格式如PDF、Word、TXT。然后配置模型,这里可能需要集成本地或云端的LLM,如Ollama或OpenAI。最后是测试问答功能和优化知识库。 需要确保每个步骤清晰,命令准确,并参考引用中的具体命令,比如Docker运行指令和目录挂载。同时,提醒用户注意端口冲突和文件路径权限问题。另外,可能还需要指导如何维护知识库,比如更新文档或调整模型参数。最后,生成相关问题,帮助用户进一步探索高级功能或解决潜在问题。</think>以下是为您整理的MaxKB详细使用教程,包含安装配置、功能操作及注意事项: ### 一、安装部署 1. **环境准备** - 操作系统:支持Windows/Linux/macOS - 安装Docker(最低版本20.10+) 2. **快速启动** 执行以下命令(以Windows为例): ```bash docker run -d --name=maxkb \ --restart=always \ -p 8080:8080 \ -v C:/maxkb:/var/lib/postgresql/data \ -v C:/python-packages:/opt/maxkb/app/sandbox/python-packages \ registry.fit2cloud.com/maxkb/maxkb ``` 参数说明: - `-p 8080:8080`:映射容器端口到宿主机 - `-v`参数挂载数据目录和Python依赖包目录[^2][^5] ### 二、系统初始化 1. 访问`http://localhost:8080`进入控制台 2. 首次使用需创建管理员账户 3. 进入「系统设置」配置: - 模型管理:对接本地Ollama或云端API - 存储路径检查(确保挂载目录权限正常) - 网络代理设置(如需访问外部模型) ### 三、知识库创建 1. **新建知识库** 点击「知识库管理」→「创建」→ 输入名称/描述 ```markdown 示例配置: - 名称:产品手册库 - 分词模式:智能语义切分 - 访问权限:部门级可见 ``` 2. **文档上传** 支持格式:PDF/DOCX/TXT/Markdown *建议操作:* - 单文件不超过50MB - 批量上传时按主题分类 - 启用「自动段落编号」功能[^4] 3. **数据预处理** - 自动执行:文本提取→向量化→索引构建 - 查看处理日志确认成功状态 ### 四、模型配置 1. **本地模型集成**(以Ollama为例) ```bash # 启动Ollama服务 docker run -d -p 11434:11434 --name ollama ollama/ollama # MaxKB模型配置页填写: API地址:http://ollama:11434 模型名称:llama2-chinese ``` 2. **云端模型对接** 支持OpenAI/Azure/DeepSeek等平台,需填写API密钥和端点地址[^3] ### 五、问答测试 1. 进入「对话测试」界面 2. 选择知识库和模型组合 3. 输入测试问题: ```python # 示例问题类型 "请列出产品X的技术参数" "如何解决Y功能的报错代码0xE12?" ``` 4. 分析回答准确率,通过「反馈」按钮优化结果 ### 六、高级功能 1. **多知识库联合查询**:创建组合查询策 2. **API对接**:通过RESTful接口集成到业务系统 ```bash curl -X POST http://localhost:8080/api/query \ -H "Content-Type: application/json" \ -d '{"question":"保修政策","knowledgebase_ids":[1,2]}' ``` 3. **权限管理**:设置角色(管理员/编辑员/普通用户) ### 常见问题排查 1. 服务启动失败:检查8080端口占用`netstat -ano | findstr :8080` 2. 文档解析异常:确认文件编码为UTF-8 3. 问答结果不准确:调整分词粒度或补充关联文档
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值