深度学习基础之归一化

归一化是深度学习预处理的关键步骤,有助于提高求解速度和模型泛化能力。本文详细介绍了归一化的含义、作用,包括线性归一化、z-score标准化、小数定标规范化和非线性归一化等类型。此外,还讨论了局部响应归一化(LRN)和批归一化(BatchNormalization,BN)的优势,如加速训练、减少对学习率的依赖以及缓解过拟合。BN算法流程包括计算样本均值和标准差,进行归一化处理和重构,其中γ和β为可学习参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



数据归一化是深度学习数据预处理非常关键的步骤,可以起到统一量纲,防止小数据被吞噬等作用。

归一化:把所有数据都转化为[0,1]或者[-1,1]之间的数,其目的是取消各维数据间数量级差别,避免因为输入输出数据数量级差别较大而造成网络预测误差较大。

一、归一化的含义

归一化的具体作用是归纳统一样本的统计分布性。归一化在 0 − 1 0-1 01 之间是统计的概率分布, 归一化在-1~ +1 之间是统计的坐标分布。

归一化有同一、统一和合一的意思。无论是为了建模还是为了计算,首先基本度量单位要同一,神经网络是以样本在事件中的统计分别几率来进行训练(概率计算)和预测的,且 sigmoid 函数的取值是 0 到 1 之间的,网络最后一个节点的输出也是如此,所以经常要对样本的输出归一化处理。

归一化是统一在 0 − 1 0-1 01 之间的统计概率分布, 当所有样本的输入信号都为正值时,与第一隐含层神经元相连的权值只能同时增加或减小,从 而导致学习速度很慢。另外在数据中常存在奇异样本数据,奇异样本数据存在所引起的网络训练时间增加,并可能引起网络无法收敛。为了避免出现这种情况及后面数据处理的方便,加快网络学习速度,可以对输入信号进行归一化,使得所有样本的输入信号其均值接近于 0 或与其均方差相比很小。

二、归一化的作用

  • 1、为了后面数据处理的方便,归一化的确可以避免一些不必要的数值问题。
  • 2、为了程序运行时收敛加快。
  • 3、同一量纲。样本数据的评价标准不一样,需要对其量纲化,统一评价标准。这算是应用层面的需求。
  • 4、避免神经元饱和。什么意思?就是当神经元的激活在接近 0 或者 1 时会饱和,在这些区域,梯度几乎为 0,这样,在反向传播过程中,局部梯度就会接近 0,这会有效地“杀死” 梯度。
  • 5、保证输出数据中数值小的不被吞食。

三、归一化的类型

1、线性归一化

也称为最小-最大规范化离散标准化,是对原始数据的线性变换,将数据值映射到 [ 0 , 1 ] [0, 1] [0,1]之间。

x ′ = x − m i n ( x ) m a x ( x ) − m i n ( x ) x'=\frac{x-min(x)}{max(x)-min(x)} x=max(x)min(x)xmin(x)

离差标准化保留了原来数据中存在的关系,是消除量纲和数据取值范围影响的最简单方法。

适用范围:比较适用在数值比较集中的情况。

缺点

  • 1)如果 max 和 min 不稳定,很容易使得归一化结果不稳定,使得后续使用效果也不稳定。如遇到超过目前属性 [ m i n , m a x ] [min,max] [min,max]取值范围的时候,会引起系统报错,需要重新确定min和max。
  • 2)如果数值集中且某个数值很大,则规范化后各值接近于0,并且将会相差不大。(如 1, 1.2, 1.3, 1.4, 1.5, 1.6,10)这组数据。

2、零-均值规范化(z-score标准化

零-均值规范化也称标准差标准化,经过处理的数据的均值为0,标准差为1。转化公式为:

x ′ = x − μ δ x'=\frac{x-\mu}{\delta} x=δxμ

其中 μ \mu μ为原始数据的均值, δ \delta δ为原始数据的标准差,是当前用得最多的数据标准化方式。

标准差分数可以回答这样一个问题:"给定数据距离其均值多少个标准差"的问题,在均值之上的数据会得到一个正的标准化分数,反之会得到一个负的标准化分数。

3、小数定标规范化

通过移动属性值的小数位数,将属性值映射到[-1, 1]之间,移动的小数位数取决于属性值绝对值的最大值。转化公式为:

x ′ = x 1 0 k x'=\frac{x}{10^k} x=10kx

4、非线性归一化

该方法包括 log、指数,正切等。

适用范围:经常用在数据分化比较大的场景,有些数值很大,有些很小。通过一些数学函 数,将原始值进行映射。

四、归一化理解

1、归一化能提高求解最优解速度

在这里插入图片描述
两张图代表数据是否均一化的最优解寻解过程(圆圈可以理解为等高线)。左图表示未经归一化操作的寻解过程,右图表示经过归一化后的寻解过程。

当使用梯度下降法寻求最优解时,很有可能走“之字型”路线(垂直等高线走),从而导致需要迭代很多次才能收敛;而右图对两个原始特征进行了归一化,其对应的等高线显得很圆, 在梯度下降进行求解时能较快的收敛。

因此如果机器学习模型使用梯度下降法求最优解时,归一化往往非常有必要,否则很难收 敛甚至不能收敛。

2、3D 图解未归一化

例子:

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值