近期关于ChatGPT的话题再次升温,我们询问了ChatGPT一个企业决策中的常见场景,看看它是怎么应答的。
ChatGPT虽然没有给出直接的解决方案,但提供了一个解题思路:销售人员与客户的匹配,要考虑客户和销售人员的种种因素,可以使用CRM系统,管理相关的数据,通过算法进行匹配。
传统的CRM想要增加一个这样功能至少需要100人天以上开发工作,但是用低代码搭建的CRM就不一样了。来看看我们用道一云七巧搭建的CRM+是怎么做的?基于低代码能力,只需3天就能上线一个智能决策组件,帮助管理者给客户匹配最合适的销售人员,在客户试用当月,成交率就提升了3.7%,平均客单价提升了12.5%。
1. 低代码开发辅助决策组件
在之前搭建的CRM中,我们已经完成了对客户的行业属性标记,以及销售人员历史成交记录的沉淀,但两者并没有建立起直接的联系。
于是在分配环节,我们为销售管理者用低代码开发了一个辅助决策的自定义组件。七巧将在过往的数据中筛选统计,根据相同行业的成单率和历史成单率排名,排除无法接单的人选后,显示出推荐人选,并预测出预估的成单金额。
点击推荐依据,还可以查看智能决策组件所参考的各项数据,在辅助决策的基础下,把最终决定权留给管理者。
2. 辅助决策的实现逻辑
在这个案例当中,我们发现智能辅助决策的实现主要分为三步:
一是系统对历史业务数据的沉淀积累。在客户层面我们需要对客户进行准确标签分类(包括但不限于行业、规模、使用目的、意向),在内部管理层面,我们要对历史输赢单数据(历史成单量、成单金额、成单总额、赢单率等)进行统计管理。
二是基于数据找到业务规律。在大量的数据当中,管理者和数据分析团队,需要找到什么样的数据指标,和业务结果的相关性最大,并建立决策模型进行测试验证。
三是通过系统落地固化决策模型。有了决策模型,还需要落实到数字化系统中去,才能真正产生业务价值,道一云七巧为企业提供了脚本编辑器、自定义组件等完善的低代码开发能力套件,能帮助企业对系统进行快速迭代和调整,让智能辅助能力落实到各个决策场景。
3. 辅助决策的更多应用场景
经济新常态下,精细化运营成为企业增长的关键动力,对决策质量提出了更高要求。同时,复杂多变的商业环境使决策约束条件不断增多,并对决策敏捷性提出了更高要求。因此,依靠经验的传统业务决策愈发难以满足企业的需求,企业需要对决策方式进行升级。
智能决策的应用,远不限于客户分配的场景,在人力资源、项目管理、行政审批、风险管理等不同业务场景都能得到广泛应用。而低代码的出现,将原本需要高昂开发成本才能实现的智能决策,变成一个个开箱可用的应用组件,大大降低了企业数字化的成本门槛,更多玩法期待你的探索!
作者介绍:
道一云 ,成立于2004年,是中国低代码领域的领导厂商、腾讯战略投资企业、腾讯生态核心合作伙伴。拥有自主知识产权管理软件产品百余项,涵盖数字化应用构建低代码平台-七巧、全场景智能业务分析BI-七析、千人千面、数智化办公企业级门户-七星以及30多款开箱即用的场景应用。
欢迎关注:
公众号:道一云低代码(do1info)
官网: https://www.do1.com.cn/
免费体验: 道一云产品免费试用(do1.com.cn)