2017/02/16
邱茂林 计算机视觉中摄像机标定综述
Overview of camera calibration for computer vision
- 引言
- 传统的摄像机定标方法
- 利用最最优化算法的摄像机定标方法
- 利用透视变换矩阵的摄像机定标方法
- 两步法
- 双平面定标方法
- 摄像机自标定方法
- 利用本质矩阵和基本矩阵的摄像机定标方法
- 利用绝对二次曲线和外极线变换性质的摄像机定标方法
- 利用主动系统控制摄像机做特定运动的自定标方法
- 利用多副图像之间的直线对应关系的摄像机定标方法
- 总结
伍雪冬 计算机视觉中传统摄像机定标方法综述
Review of traditional camera calibration methods in computer vision
- 引言
- 摄像机模型
- 针孔摄像机模型
- 非线性摄像机模型
- 传统摄像机定标方法
- 三维定标物
- 平面型定标物
- 两步定标法
- 双平面定标法
- 结语
尽管前面所提出各种摄像机传统定标方法在理论上都是切实可行的, 但仍有许多地方需要作 更进一步的研究。
1)图像一般包含有噪声,即使这种噪声非常小,内部参数的实际解与由约束关系所得解之间的差异仍然是相当大的,怎样提高解的鲁棒性成 了摄像机定标领域的一个必须解决的问题。
2)摄像机定标所解决的问题归根结底是得到一组非线性方程的解, 一般情况下使用各种优化方法,但实际上所得优化解往往不是全局的 ,因 此 ,进一步研究更合理的求解非线性方程的方法 同样非常重要。
3)不确定性是相当重要的 ,因为它决定计算参数的可信度, 摄像机定标参数的不确定性对三维重建有何影响和约束关系的不确定性是怎样传 播等这些都有待进一步深入研究。