实变函数论:概述【法国数学家勒贝格创立】【黎曼意义下可积的函数类太少】【狄利克雷函数不可黎曼积分->勒贝格积分(用新的方法计算积分面积)】【黎曼积分(R-积分)是对x轴划分、勒贝格积分是对y轴划分】

常常听说"实变函数很难学".确实,在20世纪50年代,一位数学系的老师能够讲授实变函数论,往往就能使学生们刮目相看.可是,半个多世纪过去了,大学数学系的学生成倍、甚至几十倍地增加,大家都会学一些实变函数,实变函数也就不神秘了.时至今日,甚至一些工程师也需要知道一点"勒贝格积分",把平方可积函数空间当作一种常识.

实变函数论是19世纪末20世纪初,主要由法国数学家勒贝格( Lebesgue)创立的.

它是普通微积分学的继续,其目的是想克服牛顿和莱布尼茨所建立的微积分学存在的缺点,使得微分和积分的运算更加对称、更加完美

我们以前学过的微积分,有一个明显的不足:黎曼( Riemann)意义下可积的函数类太少.

例如,定义在 [ 0 , 1 ] [ 0 , 1 ] [0,1] 上的狄利克雷(Dirichlet )函数 D ( x ) D ( x ) D(x)(有理数点上取值1,无理数点上取值0),看上去非常简单,但是它不可积(黎曼意义下).

于是数学家们想到,这大概是黎曼积分的定义有问题了,应该引进一种新的积分才是.

这就是勒贝格研究实变函数的出发点,那么黎曼积分究竟有什么缺陷呢?让我们细细咀嚼一下黎曼积分的定义.

一、黎曼积分

在这里插入图片描述


定理9.3 (可积准则)

函数 f f f [ a , b ] [a, b] [a,b] 上可积的充要条件是: 任给 ε > 0 \varepsilon>0 ε>0, 总存在相应的一个分割 T T T, 使得

S ( T ) − s ( T ) < ε . ( 2 ) S(T)-s(T)<\varepsilon . \quad\quad(2) S(T)s(T)<ε.(2)

定理 9.3’

函数 f f f [ a , b ] [a, b] [a,b] 上可积的充要条件是: 任给 ε > 0 \varepsilon>0 ε>0,总存在相应的某一分割 T T T, 使得

∑ T ω i Δ x i < ε . ( 2 ′ ) \sum_{T} \omega_{i} \Delta x_{i}<\varepsilon . \quad\quad(2') Tω

  • 16
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值