高等数学笔记-苏德矿-第十章 曲线积分和曲面积分-第三节-点函数积分

本文详细介绍了高等数学中点函数积分的概念,包括定义、积分区域的要求、物理意义、积分定理与性质,以及在质心、转动惯量和引力问题中的应用实例。通过微元法和具体示例演示了如何计算不同维度下的积分,如三维空间、二维平面和一维区间。
摘要由CSDN通过智能技术生成

高等数学笔记-苏德矿

第十章 曲线积分和曲面积分

第三节 点函数积分

一、点函数积分的概念

01 点函数积分的定义

∫ a b f ( x ) d x    ,    ∬ σ f ( x , y ) d σ    ,    ∭ V f ( x , y , z ) d V ∫ Γ A B f ( x , y ) d s    ,    ∫ Γ A B f ( x , y , z ) d s    ,    ∬ Σ f ( x , y , z ) d S \begin{aligned} & \int_{a}^{b}f(x)dx\ \ , \ \ \iint\limits_{\sigma}f(x,y)d\sigma\ \ , \ \ \iiint\limits_{V}f(x,y,z)dV\\ & \int_{\Gamma_{AB}}f(x,y)ds\ \ , \ \ \int_{\Gamma_{AB}}f(x,y,z)ds\ \ , \ \ \iint \limits_{\Sigma}f(x,y,z)dS \end{aligned} abf(x)dx  ,  σf(x,y)dσ  ,  Vf(x,y,z)dVΓABf(x,y)ds  ,  ΓABf(x,y,z)ds  ,  Σf(x,y,z)dS

积分区域记为 Ω \Omega Ω,称为形体。积分记为 ∫ Ω f ( P ) d Ω \int \limits_{\Omega}f(P)d\Omega Ωf(P)dΩ,称为点函数的积分。

01 点函数积分的积分区域

以后涉及到 Ω \Omega Ω

如果 Ω \Omega Ω 指的是曲线,要求分段光滑;

如果 Ω \Omega Ω 指的是曲面,要求分片光滑;

如果 Ω \Omega Ω 指的是立体,要求有界闭区域;

如果 Ω \Omega Ω 指的是 x O y xOy xOy 平面上的区域,要求闭区域。

二、点函数积分的定理和性质

01 点函数积分的物理意义

物理意义:若 Ω \Omega Ω 的密度函数为 μ = f ( P ) \mu=f(P) μ=f(P) 连续,则 Ω \Omega Ω 的质量 M = ∫ Ω f ( P ) d Ω M=\int \limits_{\Omega}f(P)d\Omega M=Ωf(P)dΩ .

02 可积的必要条件

定理:若 f ( P ) f(P) f(P) 在有界闭形体 Ω \Omega Ω 上连续,则 f ( P ) f(P) f(P) Ω \Omega Ω 上可积。反之不成立。

03 点函数积分的性质
  • 点函数积分具有二重积分的所有性质。
  • 点函数的积分中值定理:
    • f ( P ) f(P) f(P) 在有界闭形体 Ω \Omega Ω 上连续,则 ∃   P ∗ ∈ Ω \exist\ P^*\in\Omega  PΩ,使 ∫ Ω f ( P ) d Ω = f ( P ∗ ) ⋅ Ω \int \limits_{\Omega}f(P)d\Omega=f(P^*)\cdot\Omega Ωf(P)dΩ=f(P)Ω .
    • 等式右边的 Ω \Omega Ω 表示 Ω \Omega Ω 的大小。
  • 利用区域 Ω \Omega Ω 的对称性,被积函数关于相应变量的奇偶性来简化计算。

三、点函数积分的分类

  • Ω ∈ R 3 \Omega\in\mathrm{R}^3 ΩR3

    • Ω \Omega Ω 指的是空间曲线或曲面或立体
    • f ( x , y , z ) f(x,y,z) f(x,y,z) 在有界闭形体 Ω \Omega Ω 上连续,且 Ω \Omega Ω 关于 x O y xOy xOy 平面对称,
    • Ω = Ω 上 + Ω 下 \Omega=\Omega_{上}+\Omega_{下} Ω=Ω+Ω
    • ∫ Ω f ( x , y , z ) d Ω = { 0 f ( x , y , − z ) = − f ( x , y , z ) 2 ∫ Ω 上 f ( x , y , z ) d Ω f ( x , y , − z ) = f ( x , y , z ) \int \limits_{\Omega}f(x,y,z)d\Omega= \begin{cases}0 & f(x,y,-z)=-f(x,y,z)\\ 2\int \limits_{\Omega_{上}}f(x,y,z)d\Omega & f(x,y,-z)=f(x,y,z)\end{cases} Ωf(x,y,z)dΩ=02Ωf(x,y,z)dΩf(x,y,z)=f(x,y,z)f(x,y,z)=f(x,y,z)
  • Ω ∈ R 2 \Omega\in\mathrm{R}^2 ΩR2

    • Ω \Omega Ω 指的是平面曲线或平面区域
    • f ( x , y ) f(x,y) f(x,y) 在有界闭形体 Ω \Omega Ω 上连续,且 Ω \Omega Ω 关于 x x x 轴对称,
    • ∫ Ω f ( x , y ) d Ω = { 0 f ( x , − y ) = − f ( x , y ) 2 ∫ Ω 上 f ( x , y , z ) d Ω f ( x , − y ) = f ( x , y ) \int \limits_{\Omega}f(x,y)d\Omega= \begin{cases}0 & f(x,-y)=-f(x,y)\\ 2\int \limits_{\Omega_{上}}f(x,y,z)d\Omega & f(x,-y)=f(x,y)\end{cases} Ωf(x,y)dΩ=02Ωf(x,y,z)dΩf(x,y)=f(x,y)f(x,y)=f(x,y)

四、点函数积分的微元法

求分布在有界闭形体 Ω \Omega Ω 上的一个量 Q Q Q 的值仍用 Q Q Q 表示,当 Q = ∑ i = 1 n Δ Q i Q=\sum\limits_{i=1}^n \Delta{Q_i} Q=i=1nΔQi,即总量等于部分量之和,此时采用微元法求解。

选取 d Ω ⊂ Ω d\Omega\subset\Omega dΩΩ d Ω d\Omega dΩ 的大小仍用 d Ω d\Omega dΩ 表示,把 d Ω d\Omega dΩ 上所求的量 Δ Q \Delta Q ΔQ 表示为: ( Δ Q ≈ )   f ( P ) d Ω = d Q   ,   P ∈ Ω (\Delta Q\approx)\ f(P)d\Omega=dQ \ , \ P\in\Omega (ΔQ) f(P)dΩ=dQ , PΩ

Q = ∫ Ω f ( P ) d Ω Q=\int_{\Omega}f(P)d\Omega Q=Ωf(P)dΩ 称为微元法。

五、点函数积分在物理上的应用

01 质心(重心)

由物理知识,设 P 1 ( x 1 , y 1 ) P_1(x_1,y_1) P1(x1,y1) P 2 ( x 2 , y 2 ) P_2(x_2,y_2) P2(x2,y2),… , P i ( x i , y i ) P_i(x_i,y_i) Pi(xi,yi),… , P n ( x n , y n ) P_n(x_n,y_n) Pn(xn,yn) 为平面上的 n n n 个质点,

质量分别为 m 1 m_1 m1 m 2 m_2 m2,… , m i m_i mi,… , m n m_n mn

设该质点系的重心为 ( x ‾ , y ‾ ) (\overline{x},\overline{y}) (x,y),则
x ‾ = x 1 m 1 + x 2 m 2 + ⋯ + x i m i + ⋯ + x n m n m 1 + m 2 + ⋯ + m i + ⋯ + m n = ∑ i = 1 n x i m i ∑ i = 1 n m i y ‾ = y 1 m 1 + y 2 m 2 + ⋯ + y i m i + ⋯ + y n m n m 1 + m 2 + ⋯ + m i + ⋯ + m n = ∑ i = 1 n y i m i ∑ i = 1 n m i \begin{aligned} & \overline{x}=\frac{x_1m_1+x_2m_2+\cdots+x_im_i+\cdots+x_nm_n}{m_1+m_2+\cdots+m_i+\cdots+m_n}=\frac{\sum\limits_{i=1}^n {x_im_i}}{\sum\limits_{i=1}^n {m_i}}\\ & \overline{y}=\frac{y_1m_1+y_2m_2+\cdots+y_im_i+\cdots+y_nm_n}{m_1+m_2+\cdots+m_i+\cdots+m_n}=\frac{\sum\limits_{i=1}^n {y_im_i}}{\sum\limits_{i=1}^n {m_i}} \end{aligned} x=m1+m2++mi++mnx1m1+x2m2++ximi++xnmn=i=1nmii=1nximiy=m1+m2++mi++mny1m1+y2m2++yimi++ynmn=i=1nmii=1nyimi

  • Ω ∈ R 3 \Omega\in\mathrm{R}^3 ΩR3 Ω \Omega Ω 的密度函数为 μ = f ( x , y , z ) \mu=f(x,y,z) μ=f(x,y,z) 连续,求 Ω \Omega Ω 的重心坐标 ( x ‾ , y ‾ , z ‾ ) (\overline{x},\overline{y},\overline{z}) (x,y,z)

    • 分割:

      Ω \Omega Ω 分成 n n n 个小的形体 Δ Ω 1 \Delta\Omega_1 ΔΩ1 Δ Ω 2 \Delta\Omega_2 ΔΩ2,… , Δ Ω i \Delta\Omega_i ΔΩi,… , Δ Ω n \Delta\Omega_n ΔΩn

      Δ Ω i \Delta\Omega_i ΔΩi 的大小仍用 Δ Ω i \Delta\Omega_i ΔΩi 表示,设 λ i \lambda_i λi Δ Ω i \Delta\Omega_i ΔΩi 的直径, λ = max ⁡ 1 ⩽ i ⩽ n λ i \lambda=\max \limits_{1 \leqslant i \leqslant n}\lambda_{i} λ=1inmaxλi

    • 取近似

      ∀   P i ∈ ( x i , y i , z i ) ∈ Δ Ω i \forall\ P_i\in(x_i,y_i,z_i)\in\Delta\Omega_i  Pi(xi,yi,zi)ΔΩi,把 Δ Ω i \Delta\Omega_i ΔΩi 看成在 P i P_i Pi 点,

      它们质量近似看成 f ( x i , y i , z i ) Δ Ω i f(x_i,y_i,z_i)\Delta\Omega_i f(xi,yi,zi)ΔΩi i = 1 , 2 , ⋯   , n i=1,2,\cdots,n i=1,2,,n

      x ‾ = ∑ i = 1 n x i f ( x i , y i , z i ) Δ Ω i ∑ i = 1 n f ( x i , y i , z i ) Δ Ω i \displaystyle{ \overline{x}=\frac{\sum\limits_{i=1}^n {x_i}f(x_i,y_i,z_i)\Delta\Omega_i}{\sum\limits_{i=1}^n f(x_i,y_i,z_i)\Delta\Omega_i} }% x=i=1nf(xi,yi,zi)ΔΩii=1nxif(xi,yi,zi)ΔΩi

    • 取极限

      x ‾ = lim ⁡ λ → 0 ∑ i = 1 n x i f ( x i , y i , z i ) Δ Ω i ∑ i = 1 n f ( x i , y i , z i ) Δ Ω i = ∫ Ω x f ( x , y , z ) d Ω ∫ Ω f ( x , y , z ) d Ω = ∫ Ω x f ( x , y , z ) d Ω M \displaystyle{ \overline{x}=\lim \limits_{\lambda \rightarrow 0}\frac{\sum\limits_{i=1}^n {x_i}f(x_i,y_i,z_i)\Delta\Omega_i}{\sum\limits_{i=1}^n f(x_i,y_i,z_i)\Delta\Omega_i}= \frac{\int_{\Omega}{x}f(x,y,z)d\Omega}{\int_{\Omega} f(x,y,z)d\Omega}= \frac{\int_{\Omega}{x}f(x,y,z)d\Omega}{M} }% x=λ0limi=1nf(xi,yi,zi)ΔΩii=1nxif(xi,yi,zi)ΔΩi=Ωf(x,y,z)dΩΩxf(x,y,z)dΩ=MΩxf(x,y,z)dΩ

    • 同理,

      y ‾ = ∫ Ω y f ( x , y , z ) d Ω M    ,    z ‾ = ∫ Ω z f ( x , y , z ) d Ω M \displaystyle{ \overline{y}=\frac{\int_{\Omega}{y}f(x,y,z)d\Omega}{M} \ \ ,\ \ \overline{z}=\frac{\int_{\Omega}{z}f(x,y,z)d\Omega}{M} }% y=MΩyf(x,y,z)dΩ  ,  z=MΩzf(x,y,z)dΩ

    • 特别地,

      密度 f ( x , y , z ) = μ 0 f(x,y,z)=\mu_0 f(x,y,z)=μ0 常数,此时重心称为形心。

    • 此时,

      x ‾ = ∫ Ω x   d Ω ∫ Ω d Ω = ∫ Ω x   d Ω Ω \displaystyle{ \overline{x}=\frac{\int_{\Omega}x\ d\Omega}{\int_{\Omega}d\Omega}=\frac{\int_{\Omega}x\ d\Omega}{\Omega} }% x=ΩdΩΩx dΩ=ΩΩx dΩ y ‾ = ∫ Ω y   d Ω Ω \displaystyle{ \overline{y}=\frac{\int_{\Omega}y\ d\Omega}{\Omega} }% y=ΩΩy dΩ z ‾ = ∫ Ω z   d Ω Ω \displaystyle{ \overline{z}=\frac{\int_{\Omega}z\ d\Omega}{\Omega} }% z=ΩΩz dΩ

  • Ω ∈ R 2 \Omega\in\mathrm{R}^2 ΩR2 Ω \Omega Ω 的密度函数为 μ = f ( x , y ) \mu=f(x,y) μ=f(x,y) 连续,求 Ω \Omega Ω 的重心坐标 ( x ‾ , y ‾ ) (\overline{x},\overline{y}) (x,y)

    • x ‾ = ∫ Ω x f ( x , y ) d Ω ∫ Ω f ( x , y ) d Ω = ∫ Ω x f ( x , y ) d Ω M \displaystyle{ \overline{x}=\frac{\int_{\Omega}xf(x,y)d\Omega}{\int_{\Omega}f(x,y)d\Omega}=\frac{\int_{\Omega}xf(x,y)d\Omega}{M} }% x=Ωf(x,y)dΩΩxf(x,y)dΩ=MΩxf(x,y)dΩ y ‾ = ∫ Ω y f ( x , y ) d Ω M \displaystyle{ \overline{y}=\frac{\int_{\Omega}yf(x,y)d\Omega}{M} }% y=MΩyf(x,y)dΩ

    • 特别地, f ( x , y ) = μ 0    ( 常 数 ) f(x,y)=\mu_0\ \ (常数) f(x,y)=μ0  ()

      x ‾ = ∫ Ω x d Ω ∫ Ω d Ω = ∫ Ω x d Ω Ω \displaystyle{ \overline{x}=\frac{\int_{\Omega}xd\Omega}{\int_{\Omega}d\Omega}=\frac{\int_{\Omega}xd\Omega}{\Omega} }% x=ΩdΩΩxdΩ=ΩΩxdΩ

      y ‾ = ∫ Ω y d Ω ∫ Ω d Ω = ∫ Ω y d Ω Ω \displaystyle{ \overline{y}=\frac{\int_{\Omega}yd\Omega}{\int_{\Omega}d\Omega}=\frac{\int_{\Omega}yd\Omega}{\Omega} }% y=ΩdΩΩydΩ=ΩΩydΩ

  • Ω = [ a , b ] ⊂ R \Omega=[a,b]\subset\mathrm{R} Ω=[a,b]R Ω \Omega Ω 的密度函数为 μ = f ( x ) \mu=f(x) μ=f(x) 连续,求 Ω \Omega Ω 的重心坐标 x ‾ \overline{x} x

    • Ω \Omega Ω 的重心

      x ‾ = ∫ a b x f ( x ) d x ∫ a b f ( x ) d x = ∫ a b x f ( x ) d x M \displaystyle{ \overline{x}=\frac{\int_{a}^{b}xf(x)dx}{\int_{a}^{b}f(x)dx}=\frac{\int_{a}^{b}xf(x)dx}{M} }% x=abf(x)dxabxf(x)dx=Mabxf(x)dx

02 转动惯量

设质点 A A A 的质量为 M M M L L L 为一个定直线, A A A L L L 的距离为 r r r,则 A A A L L L 的转动惯量记为 I L I_L IL,则 I L = m r 2 I_L=mr^2 IL=mr2

01 Ω ∈ R 3 \Omega\in\mathrm{R}^3 ΩR3 μ = f ( x , y , z ) \mu=f(x,y,z) μ=f(x,y,z) 连续,求 Ω \Omega Ω 对直线 L L L 的转动惯量 I L I_L IL

分析:有所求的转动惯量 I L I_L IL 分布在 Ω \Omega Ω 上(总量等于部分量之和)

(1) 选取 d Ω ⊂ Ω d\Omega\subset\Omega dΩΩ d Ω d\Omega dΩ L L L 的转动惯量设为 Δ I L \Delta I_L ΔIL ∀   P ( x , y , z ) ∈ d Ω \forall\ P(x,y,z)\in d\Omega  P(x,y,z)dΩ

质量 ( Δ M ≈ )   f ( x , y , z ) d Ω = d M (\Delta M\approx)\ f(x,y,z)d\Omega=dM (ΔM) f(x,y,z)dΩ=dM ⇒ \Rightarrow ( Δ M ≈ )   d 2 ( P , L ) ⋅ f ( x , y , z ) d Ω = d I L (\Delta M\approx)\ d^2(P,L)\cdot f(x,y,z)d\Omega=dI_L (ΔM) d2(P,L)f(x,y,z)dΩ=dIL

公式怎么记?

(2) 第二步
I L = ∫ Ω d 2 ( P , L ) ⋅ f ( x , y , z ) d Ω I z = ∫ Ω ( x 2 + y 2 ) ⋅ f ( x , y , z ) d Ω I y = ∫ Ω ( y 2 + z 2 ) ⋅ f ( x , y , z ) d Ω I x = ∫ Ω ( z 2 + x 2 ) ⋅ f ( x , y , z ) d Ω \begin{aligned} & I_L=\int_{\Omega}d^2(P,L)\cdot f(x,y,z)d\Omega\\ & I_z=\int_{\Omega}(x^2+y^2)\cdot f(x,y,z)d\Omega\\ & I_y=\int_{\Omega}(y^2+z^2)\cdot f(x,y,z)d\Omega\\ & I_x=\int_{\Omega}(z^2+x^2)\cdot f(x,y,z)d\Omega \end{aligned} IL=Ωd2(P,L)f(x,y,z)dΩIz=Ω(x2+y2)f(x,y,z)dΩIy=Ω(y2+z2)f(x,y,z)dΩIx=Ω(z2+x2)f(x,y,z)dΩ
02 Ω ∈ R 3 \Omega\in\mathrm{R}^3 ΩR3 μ = f ( x , y ) \mu=f(x,y) μ=f(x,y) 连续,求 Ω \Omega Ω 对直线 L L L 的转动惯量 I L I_L IL ,则

I L = ∫ Ω d 2 ( P , L ) ⋅ f ( x , y ) d Ω I_L=\int_{\Omega}d^2(P,L)\cdot f(x,y)d\Omega IL=Ωd2(P,L)f(x,y)dΩ
I L = ∫ Ω d 2 ( P , L ) ⋅ f ( x , y ) d Ω I x = ∫ Ω y 2 ⋅ f ( x , y ) d Ω I y = ∫ Ω x 2 ⋅ f ( x , y ) d Ω I z = ∫ Ω ( x 2 + y 2 ) ⋅ f ( x , y ) d Ω \begin{aligned} & I_L=\int_{\Omega}d^2(P,L)\cdot f(x,y)d\Omega\\ & I_x=\int_{\Omega}y^2\cdot f(x,y)d\Omega\\ & I_y=\int_{\Omega}x^2\cdot f(x,y)d\Omega\\ & I_z=\int_{\Omega}(x^2+y^2)\cdot f(x,y)d\Omega \end{aligned} IL=Ωd2(P,L)f(x,y)dΩIx=Ωy2f(x,y)dΩIy=Ωx2f(x,y)dΩIz=Ω(x2+y2)f(x,y)dΩ

03 引力

设质点 A A A 的质量为 m 1 m_1 m1,质点 B B B 的质量为 m 2 m_2 m2,求 A   ,   B A\ , \ B A , B 两点间的引力 F ⃗ \vec{F} F 的大小,
∣ F ⃗ ∣ = k m 1 m 2 r 2    ,    r = ∣ A B ∣ |\vec{F}|=k\frac{m_1m_2}{r^2} \ \ , \ \ r=|AB| F =kr2m1m2  ,  r=AB

01 Ω ∈ R 3 \Omega\in\mathrm{R}^3 ΩR3 μ = f ( x , y , z ) \mu=f(x,y,z) μ=f(x,y,z) 连续,有一个质点 A ( x 0 , y 0 , z 0 ) A(x_0,y_0,z_0) A(x0,y0,z0),质量为 m m m,求 Ω \Omega Ω 对质点 A A A 的引力 F ⃗ \vec{F} F

分析:所求的力 F ⃗ \vec{F} F 分布在 Ω \Omega Ω 上(总量等于部分量之和)

(1) 选取 ∀   d Ω ⊂ Ω \forall\ d\Omega\subset\Omega  dΩΩ,大小记为 d Ω d\Omega dΩ d Ω d\Omega dΩ A A A 的引力设为 Δ F ⃗ \Delta \vec{F} ΔF

∀   P ( x , y , z ) ∈ d Ω \forall\ P(x,y,z)\in d\Omega  P(x,y,z)dΩ,把 d Ω d\Omega dΩ 看成 P P P 点质量 d M = f ( x , y , z ) d Ω dM=f(x,y,z)d\Omega dM=f(x,y,z)dΩ

∣ d F ⃗ ∣ = k ⋅ m f ( x , y , z ) d Ω r 2 \displaystyle{ |d\vec{F}|=k\cdot\frac{mf(x,y,z)d\Omega}{r^2} }% dF =kr2mf(x,y,z)dΩ r = ∣ A P → ∣ = ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 r=|\overrightarrow{AP}|=\sqrt{(x-x_0)^2+(y-y_0)^2+(z-z_0)^2} r=AP =(xx0)2+(yy0)2+(zz0)2

d F ⃗ ∥ A P → d\vec{F}\parallel\overrightarrow{AP} dF AP 且方向一致 ⇒ \Rightarrow d F 0 ⃗ = A P 0 → d\vec{F^0}=\overrightarrow{AP^0} dF0 =AP0

A P → = ( x − x 0 , y − y 0 , z − z 0 ) \overrightarrow{AP}=(x-x_0,y-y_0,z-z_0) AP =(xx0,yy0,zz0)

A P 0 → = ( x − x 0 r , y − y 0 r , z − z 0 r ) = x − x 0 r ⋅ i ⃗ + y − y 0 r ⋅ j ⃗ + z − z 0 r ⋅ k ⃗ \displaystyle{ \overrightarrow{AP^0}=(\frac{x-x_0}{r},\frac{y-y_0}{r},\frac{z-z_0}{r})=\frac{x-x_0}{r}\cdot\vec{i}+\frac{y-y_0}{r}\cdot\vec{j}+\frac{z-z_0}{r}\cdot\vec{k} }% AP0 =(rxx0,ryy0,rzz0)=rxx0i +ryy0j +rzz0k

于是,
d F ⃗ = ∣ d F ⃗ ∣ ⋅ d F 0 ⃗ = k m ⋅ ( x − x 0 ) f ( x , y , z ) d Ω r 3 ⋅ i ⃗ + k m ⋅ ( y − y 0 ) f ( x , y , z ) d Ω r 3 ⋅ j ⃗ + k m ⋅ ( z − z 0 ) f ( x , y , z ) d Ω r 3 ⋅ k ⃗    ,    P ∈ Ω d\vec{F}=|d\vec{F}|\cdot d\vec{F^0}=km\cdot\frac{(x-x_0)f(x,y,z)d\Omega}{r^3}\cdot\vec{i}+ km\cdot\frac{(y-y_0)f(x,y,z)d\Omega}{r^3}\cdot\vec{j}+ km\cdot\frac{(z-z_0)f(x,y,z)d\Omega}{r^3}\cdot\vec{k}\ \ ,\ \ P\in\Omega dF =dF dF0 =kmr3(xx0)f(x,y,z)dΩi +kmr3(yy0)f(x,y,z)dΩj +kmr3(zz0)f(x,y,z)dΩk   ,  PΩ

F = G M m r 2    ,    r = ∣ A B ∣ F=G\frac{Mm}{r^2} \ \ , \ \ r=|AB| F=Gr2Mm  ,  r=AB

在这里插入图片描述
在这里插入图片描述

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值