论文阅读《Language Models are Unsupervised Multitask Learners》

论文地址:《Language Models are Unsupervised Multitask Learners》
代码地址:https://github.com/openai/gpt-2

论文介绍

本文将常识推理和情感分析两项任务联系起来,采取更一般的方法。证明了语言模型可以在zero-shot下无需任何参数或架构的修改执行下游任务。

模型框架

核心依旧是Language Modeling,形式化为
在这里插入图片描述
,从中可以学习到
。单任务预测形式化为p(output|input),多任务则为p(output|input,task),通过将tasks,inputs和outputs都表示为符号序列,便可和上面的语言模型关联起来。

Training Dataset是从网页抓取得到的相对高质量内容,数据集命名为WebText,是4500万链接的一个子集,包含超过800万个文档,共40GB的文本数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值