AlexNet网络解析

AlexNet是由Hinton学生Alex Krizhevsky在2012年提出的深度卷积网络模型,它在ImageNet大赛上的出色表现确立了深度网络在计算机视觉的地位。该网络因使用ReLU激活函数、Dropout、最大池化、LRN层和数据增广等技术亮点而著名。本文将详细介绍其网络结构、技术特点和代码实现。
摘要由CSDN通过智能技术生成

AlexNet网络解析

1简介

  AlexNet是2012年由Hinton学生Alex Krizhevsky提出的深度卷积网络模型,并在2012的ImageNet大赛上获得了飞跃性成果,以碾压性的优势超过第二名,拿到当年比赛的冠军(第一名top-5错误率16.4%,第二名top-5错误率26.2%),同时也确定了深度网络(卷积神经网络)在计算机视觉领域的地位。

2网络结构

AlexNet网络
  由于硬件显存限制(3GB),AlexNet当时的训练使用两个GPU,每个GPU的显存中各存储一半的神经元参数,两个GPU做着相同的训练,只是每一层网络在深度上平分为两部分,最终在全连接层时进行合并。
  网络输入图片大小为224x224x3,然后经过多次卷积核池化后,进入全连接层,最后用于分类,每层使用的卷积核大小、步长等参数如下:

Op kernel_size kernel_num stride activation
conv1 11x11 96<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>