AlexNet网络解析
1简介
AlexNet是2012年由Hinton学生Alex Krizhevsky提出的深度卷积网络模型,并在2012的ImageNet大赛上获得了飞跃性成果,以碾压性的优势超过第二名,拿到当年比赛的冠军(第一名top-5错误率16.4%,第二名top-5错误率26.2%),同时也确定了深度网络(卷积神经网络)在计算机视觉领域的地位。
2网络结构
由于硬件显存限制(3GB),AlexNet当时的训练使用两个GPU,每个GPU的显存中各存储一半的神经元参数,两个GPU做着相同的训练,只是每一层网络在深度上平分为两部分,最终在全连接层时进行合并。
网络输入图片大小为224x224x3,然后经过多次卷积核池化后,进入全连接层,最后用于分类,每层使用的卷积核大小、步长等参数如下:
Op | kernel_size | kernel_num | stride | activation |
---|---|---|---|---|
conv1 | 11x11 | 96< |