自动控制原理学习笔记(八)—— 离散系统的传递函数和极点

前几节笔记如下:

自动控制原理学习笔记(一)—— 控制介绍,一阶离散系统-CSDN博客

自动控制原理学习笔记(二)—— 一阶离散系统的通解,稳定性和收敛性-CSDN博客

自动控制原理学习笔记(三)—— 一阶线性定常离散系统与稳态误差-CSDN博客

自动控制原理学习笔记(四)—— 一阶系统的实验表征和 MATLAB 仿真-CSDN博客

自动控制原理学习笔记(五)—— 二阶离散系统,比例控制和 PD 控制-CSDN博客

自动控制原理学习笔记(六)—— 使用 MATLAB 求解二阶系统,PID 控制介绍-CSDN博客

自动控制原理学习笔记(七)—— 离散系统函数-CSDN博客

先以一道例题承上启下:

例 1 :某控制系统的方框图如下图所示,给出系统的表达式,并化简为 G_{1}(R)Y=G_{2}(R)X 的形式。找到系统的固有频率,并判断系统是否稳定。

答案:(1+\frac{1}{2}R^{2})Y=\frac{1}{2}X ,\lambda =\pm \frac{j}{\sqrt{2}} ,稳定

对于频域下的控制系统,我们打算再补充一点内容。

给定下图中的控制系统,我们想找到该系统的固有频率。

由于当输入信号 X=0 时,Y=\lambda ^{n} 。故在频域下的系统方框图如下图所示:

\lambda ^{n}=0+p_{0}\lambda ^{-1}\lambda ^{n}

\lambda =p_{0}

即固有频率 \lambda 的大小等于 p_{0} ,算是对前一节笔记的补充。

一、传递函数

给比较点、增益和延时环节分别提供一个输入信号,若该输入信号与 z^{n} 成比例,则这些模块的输出信号也与 z^{n} 成比例,如下图所示。

同理,对于一个包含比较点、增益或延时等环节的系统,若该系统的输入信号与 z^{n} 成比例,则该系统的输出信号也与 z^{n} 成比例。

由于 R=\frac{1}{z} ,我们将上一章笔记中定义的传递函数 H(R) 中的 R 用 \frac{1}{z} 代替,得:

H(z)=H(R)|_{R\rightarrow \frac{1}{z}}

至此,我们定义 H(z) 为系统的传递函数(或系统函数)。系统信号从时域到频域的变换也称为 Z 变换。

例 2 :下图为小车巡线的系统方框图,传递函数 H(z)=\frac{Y}{X} 的表达式为?

        A. (1+\mu )z^{2}-2z+1                                B. \frac{1}{z^{2}-2z+1+\mu }

        C. \frac{\mu }{z^{2}-2z+1+\mu }                                                 D. \frac{z^{2}-2z+1}{z^{2}-2z+1+\mu }

答案:C

在前一章笔记中,我们介绍了最简单的闭环系统,它包含一条前向通路 F(R) 和一条后向通路 G(R) ,如下图所示。

Y=F(R)E=F(R)(X+G(R)Y)=F(R)X+F(R)G(R)Y

(1-F(R)G(R))Y=F(R)X

故该闭环系统的传递函数为:

H(R)=\frac{Y}{X}=\frac{F(R)}{1-F(R)G(R)}

该传递函数展现了系统方框图的反馈等效。

例 3 :令 H_{3} 为小车巡线控制系统的传递函数,H_{1} 和 H_{2} 分别为其子系统的传递函数,如下图所示,则下列表达式中正确的数量为?

        H_{1}=\frac{R}{1-2R}                        H_{2}=\frac{H_{1}R}{1+H_{1}R}                        H_{2}=\frac{R^{2}}{1-2R+R^{2}}

        H_{3}=\frac{\mu H_{2}}{1+\mu H_{2}}                                                H_{3}=\frac{\mu R^{2}}{1-2R+(1+\mu )R^{2}}

        A. 2                                B. 3                                C. 4                                D. 5

答案:D

假设某个开环系统包含比较点、增益或延时等环节,则该系统的传递函数一定可以用含 R 的多项式函数来表示:

H(R)=b_{0}+b_{1}R+b_{2}R^{2}+b_{3}R^{3}+...

令 N 为该传递函数中 R 的最高次项的次数,则这个开环系统的响应时长(即输出信号产生到停止的时间间隔)将小于等于 N 。

假设某个闭环系统的前向路径和反向路径均可以用含 R 的多项式来表示,则该系统的传递函数一定可以用含 R 的有理函数来表示:

H(R)=\frac{b_{0}+b_{1}R+b_{2}R^{2}+b_{3}R^{3}+...}{1+a_{1}R+a_{2}R^{2}+a_{3}R^{3}+...}

假设某个闭环系统的前向路径包含一个闭环环节,则该前向路径可以用一个有理函数 N_{1}(R)/D_{1}(R) 来表示;假设某个闭环系统的反向路径包含一个闭环环节,则该反向路径也可以用一个有理函数 N_{2}(R)/D_{2}(R) 来表示,如下图所示。

我们代入之前得到的闭环系统传递函数的公式,于是:

\frac{Y}{X}=\frac{\frac{N_{1}(R)}{D_{1}(R)}}{1-\frac{N_{1}(R)}{D_{1}(R)}\frac{N_{2}(R)}{D_{2}(R)}}=\frac{N_{1}(R)D_{2}(R)}{D_{1}(R)D_{2}(R)-N_{1}(R)N_{2}(R)}

由于有理函数的乘积是有理函数,故该系统的传递函数仍是有理函数。

二、极点

在前一节中,我们得到了闭环系统的传递函数 H 为一个有理函数。要想得到系统的固有频率,我们需要把该传递函数拆分为部分分式。

H=\frac{Y}{X}=\frac{b_{0}+b_{1}R+b_{2}R^{2}+b_{3}R^{3}+...}{1+a_{1}R+a_{2}R^{2}+a_{3}R^{3}+...}

化简,得:

H=\frac{Y}{X}=\frac{b_{0}+b_{1}R+b_{2}R^{2}+b_{3}R^{3}+...}{(1-p_{0}R)(1-p_{1}R)(1-p_{2}R)(1-p_{3}R)...}

部分分式展开,得:

H=\frac{Y}{X}=\frac{C_{0}}{1-p_{0}R}+\frac{C_{1}}{1-p_{1}R}+\frac{C_{2}}{1-p_{2}R}+...+D_{0}+D_{1}R+D_{2}R^{2}+...

其中,p_{i} 表示系统的固有频率,D_{i} 表示某个时刻的响应信号。

为了找到该系统的极点,我们令 R=\frac{1}{z} ,于是使 H(z) 中每个分式的分母为零的 z 即为该系统的极点。于是:

H(z)=\frac{Y}{X}=\frac{C_{0}}{1-p_{0}z^{-1}}+\frac{C_{1}}{1-p_{1}z^{-1}}+\frac{C_{2}}{1-p_{2}z^{-1}}+...+D_{0}+D_{1}z^{-1}+D_{2}z^{-2}+...

=\frac{C_{0}z}{z-p_{0}}+\frac{C_{1}z}{z-p_{1}}+\frac{C_{2}z}{z-p_{2}}+...+D_{0}+D_{1}z^{-1}+D_{2}z^{-2}+...    

即 z_{i}=p_{i} 为系统的极点。

例 4 :假设表示某个控制系统的差分方程为

y[n]=-\frac{1}{4}y[n-1]+\frac{1}{8}y[n-2]+x[n-1]-\frac{1}{2}x[n-2]

        则下列说法中正确的有哪些?

        A. 该系统的单位脉冲响应收敛至零

        B. 该系统的极点为 z=\frac{1}{2} 和 z=\frac{1}{4}

        C. 该系统的其中一个极点为 z=\frac{1}{2}

        D. 该系统有两个极点

答案:AD

三、案例:斐波那契数列

把斐波那契数列看作是某个离散系统的零输入响应,我们想知道该离散系统的差分方程及其性质。斐波那契数列可以用兔子繁殖的情形来表示:

如果每对兔子(一雄一雌)每月能生殖一对小兔子(也是一雄一雌,下同),每对兔子第一个月没有生殖能力,但从第二个月以后便能每月生一对小兔子。假定这些兔子都没有死亡现象,那么从第一对刚出生的兔子开始,12 个月以后会有多少对兔子呢?

令 c[n] 表示第 n 个月小兔子的对数,由于兔子第一个月没有生殖能力,故成年兔子的总对数 a[n] 等于第 n-1 个月成年兔子的对数加上第 n-1 个月兔子出生的对数,即:

a[n]=a[n-1]+c[n-1]

假设外部环境提供的小兔子对数为 x[n] ,由于每对成年兔子每月能生一对小兔子,故:

c[n]=x[n]+a[n-1]

y[n] 表示第 n 个月兔子的总对数,于是我们得到系统的差分方程:

y[n]=a[n]+c[n]=y[n-1]+y[n-2]+x[n-1]

令 y[-1]=0 ,y[0]=1 。则系统的零输入响应如下图所示:

 例 5 :在之前,我们得到该系统的差分方程为:

y[n]=y[n-1]+y[n-2]+x[n-1]

        则该系统的极点为?

        A. 1                B. 1 和 -1                C. -1 和 -2                D. 1.618... 和 -0.618...

答案:D

从例 5 可知,每一个极点分别对应系统的固有频率:

z_{1}=1.618 和 z_{2}=-0.618

其中有一个固有频率大于 1 ,故整个离散系统发散。

至此,关于离散系统我们暂时告一段落,接下来我们将会由离散系统转为连续系统。关于连续系统性质的介绍,详见下回分解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值