前几节笔记如下:
自动控制原理学习笔记(一)—— 控制介绍,一阶离散系统-CSDN博客
自动控制原理学习笔记(二)—— 一阶离散系统的通解,稳定性和收敛性-CSDN博客
自动控制原理学习笔记(三)—— 一阶线性定常离散系统与稳态误差-CSDN博客
自动控制原理学习笔记(四)—— 一阶系统的实验表征和 MATLAB 仿真-CSDN博客
自动控制原理学习笔记(五)—— 二阶离散系统,比例控制和 PD 控制-CSDN博客
自动控制原理学习笔记(六)—— 使用 MATLAB 求解二阶系统,PID 控制介绍-CSDN博客
先以一道例题承上启下:
例 1 :某控制系统的方框图如下图所示,给出系统的表达式,并化简为 的形式。找到系统的固有频率,并判断系统是否稳定。
答案: , ,稳定
对于频域下的控制系统,我们打算再补充一点内容。
给定下图中的控制系统,我们想找到该系统的固有频率。
由于当输入信号 时, 。故在频域下的系统方框图如下图所示:
即固有频率 的大小等于 ,算是对前一节笔记的补充。
一、传递函数
给比较点、增益和延时环节分别提供一个输入信号,若该输入信号与 成比例,则这些模块的输出信号也与 成比例,如下图所示。
同理,对于一个包含比较点、增益或延时等环节的系统,若该系统的输入信号与 成比例,则该系统的输出信号也与 成比例。
由于 ,我们将上一章笔记中定义的传递函数 中的 用 代替,得:
至此,我们定义 为系统的传递函数(或系统函数)。系统信号从时域到频域的变换也称为 Z 变换。
例 2 :下图为小车巡线的系统方框图,传递函数 的表达式为?
A. B.
C. D.
答案:C
在前一章笔记中,我们介绍了最简单的闭环系统,它包含一条前向通路 和一条后向通路 ,如下图所示。
故该闭环系统的传递函数为:
该传递函数展现了系统方框图的反馈等效。
例 3 :令 为小车巡线控制系统的传递函数, 和 分别为其子系统的传递函数,如下图所示,则下列表达式中正确的数量为?
A. 2 B. 3 C. 4 D. 5
答案:D
假设某个开环系统包含比较点、增益或延时等环节,则该系统的传递函数一定可以用含 的多项式函数来表示:
令 为该传递函数中 的最高次项的次数,则这个开环系统的响应时长(即输出信号产生到停止的时间间隔)将小于等于 。
假设某个闭环系统的前向路径和反向路径均可以用含 的多项式来表示,则该系统的传递函数一定可以用含 的有理函数来表示:
假设某个闭环系统的前向路径包含一个闭环环节,则该前向路径可以用一个有理函数 来表示;假设某个闭环系统的反向路径包含一个闭环环节,则该反向路径也可以用一个有理函数 来表示,如下图所示。
我们代入之前得到的闭环系统传递函数的公式,于是:
由于有理函数的乘积是有理函数,故该系统的传递函数仍是有理函数。
二、极点
在前一节中,我们得到了闭环系统的传递函数 为一个有理函数。要想得到系统的固有频率,我们需要把该传递函数拆分为部分分式。
化简,得:
部分分式展开,得:
其中, 表示系统的固有频率, 表示某个时刻的响应信号。
为了找到该系统的极点,我们令 ,于是使 中每个分式的分母为零的 即为该系统的极点。于是:
即 为系统的极点。
例 4 :假设表示某个控制系统的差分方程为
则下列说法中正确的有哪些?
A. 该系统的单位脉冲响应收敛至零
B. 该系统的极点为 和
C. 该系统的其中一个极点为
D. 该系统有两个极点
答案:AD
三、案例:斐波那契数列
把斐波那契数列看作是某个离散系统的零输入响应,我们想知道该离散系统的差分方程及其性质。斐波那契数列可以用兔子繁殖的情形来表示:
如果每对兔子(一雄一雌)每月能生殖一对小兔子(也是一雄一雌,下同),每对兔子第一个月没有生殖能力,但从第二个月以后便能每月生一对小兔子。假定这些兔子都没有死亡现象,那么从第一对刚出生的兔子开始,12 个月以后会有多少对兔子呢?
令 表示第 个月小兔子的对数,由于兔子第一个月没有生殖能力,故成年兔子的总对数 等于第 个月成年兔子的对数加上第 个月兔子出生的对数,即:
假设外部环境提供的小兔子对数为 ,由于每对成年兔子每月能生一对小兔子,故:
令 表示第 个月兔子的总对数,于是我们得到系统的差分方程:
令 , 。则系统的零输入响应如下图所示:
例 5 :在之前,我们得到该系统的差分方程为:
则该系统的极点为?
A. 1 B. 1 和 -1 C. -1 和 -2 D. 1.618... 和 -0.618...
答案:D
从例 5 可知,每一个极点分别对应系统的固有频率:
和
其中有一个固有频率大于 1 ,故整个离散系统发散。
至此,关于离散系统我们暂时告一段落,接下来我们将会由离散系统转为连续系统。关于连续系统性质的介绍,详见下回分解。