自动控制原理学习笔记(三)—— 一阶线性定常离散系统与稳态误差

前两节笔记详见:

自动控制原理学习笔记(一)—— 控制介绍,一阶离散系统-CSDN博客

自动控制原理学习笔记(二)—— 一阶离散系统的通解,稳定性和收敛性-CSDN博客

一、任意输入函数 x[n] 下的一阶离散系统:线性定常与叠加原理

在第二节笔记中,我们给出了一阶离散系统的方程:

y=\lambda y[n-1]+bx[n-1]

我们假设当 n ≥ 0 时输入信号 x[n] = 1 ,当 n < 0 时等于 0 。然而,这个条件十分局限,因为在现实生活中 x[n] 是任意的。如下图所示,假设我们可以求解左图输入信号对应的输出信号,那么右图更加复杂的输入信号对应的输出信号该如何求解呢?

接下来我们将引入线性一阶离散系统的两个性质:线性和定常。由于这两个性质比较直观,因此我们将不再对其证明。详细介绍请参考(奥本海姆《信号与系统 第二版》P32~P36)。

线性:

如果输入 x_{a}[n] 能够得到输出 y_{a}[n] ,输入 x_{b}[n] 能够得到输出 y_{b}[n] ,则

Ax_{a}[n]+Bx_{b}[n]\rightarrow Ay_{a}[n]+By_{b}[n]

其中 A 和 B 是常数,符号 “ \rightarrow ” 表示 “得到” 。

定常:

如果 x[n]\rightarrow y[n] ,则 x[n-n_{0}]\rightarrow y[n-n_{0}] 。

通过这两个性质可以引出叠加性质。回到之前右图的输入信号,我们将其拆分成两个经过偏移和拉伸的信号,如下图所示。

对于更复杂的输入信号,我们可以将其看成无数个不同输入信号的和,这就需要用到一种叫做卷积的工具了。卷积在形式上比较简单,但计算上需要一点数学技巧,在自动控制原理中我们将不会提及。关于卷积的详细介绍请参考(奥本海姆《信号与系统 第二版》P48~P63)

二、开环控制

我们插入一段对开环控制的介绍。这里依然使用第一节笔记中3D打印机的例子,但是我们不再考虑传感器的反馈作用。被控对象的方程如下:

\frac{T_{m}[n]-T_{m}[n-1]}{\Delta T}=\gamma u[n-1]

前馈控制器的方程为

u[n]=K_{ff}T_{d}[n]

其中 Kff 是我们选择的参数。上面两个方程合并,得

\frac{T_{m}[n]-T_{m}[n-1]}{\Delta T}=\gamma K_{ff}T_{d}[n-1]

化简,得

T_{m}[n]=T_{m}[n-1]+\Delta T \gamma K_{ff}T_{d}[n-1]

该系统的固有频率为 1 ,系统不稳定。所以如果没有反馈,这个控制系统的性能会很差,在最后我们会详细解释。

三、例子:具有热耗散的3D打印喷头

在现实生活中,3D打印机的喷头会有热耗散。在第二节的笔记中,如果没有热耗散,系统的稳态误差为 0 。我们想知道在有热耗散的情况下,该控制器对系统造成的稳态误差有多大。

在前一节中被控对象的方程如下:

T_{m}[n]=T_{m}[n-1]+\Delta T\gamma u[n-1]

在没有热耗散的情况下,温度的变化量只取决于输入信号。在现实生活中,由于空气对流等原因会带走打印喷头一部分热量,因此我们在方程右侧增加一项:

T_{m}[n]=T_{m}[n-1]+\Delta T\gamma u[n-1]+\Delta T\beta T_{m}[n-1]

其中,参数 \beta 为将前一时刻温度 T_{m}[n-1] 与温度变化量联系起来的常数。

在第二节笔记中,使用的 P 控制器的方程为

u[n]=K_{p}(T_{d}[n]-T_{m}[n])

变量代换,得

T_{m}[n]=(1-\gamma K_{p}\Delta T-\Delta T\beta )T_{m}[n-1]+\gamma \Delta T K_{p} T_{d}[n-1]

与先前的系统方程对比,这个方程新增项 -\Delta T\beta T_{m}[n-1] 来描述热耗散。这一项会改变我们对 Kp 的选择,因为它会影响系统的稳定性、收敛速度和稳态误差。

稳定性:

-1< \lambda <1

-1<1-\gamma K_{p}\Delta T-\Delta T\beta<1

\frac{2-\beta \Delta T}{\gamma \Delta T}>K_{p}>\frac{-\beta }{\gamma }

Kp 必须在上述范围中才能使得系统稳定。

收敛速度:

我们希望系统尽快收敛并达到稳态( T_{m}[n]=T_{m}[n-1] ),那么要设置系统的固有频率为 0 ,即

\lambda =(1-\gamma K_{p}\Delta T-\Delta T\beta)=0

求解 K_{p} ,于是

K_{p}=\frac{1-\Delta T\beta}{\gamma \Delta T}

这个 K_{p} 能使系统收敛最快。

稳态误差:

然而,收敛速度最快不一定最优,我们还要分析系统的稳态误差。定义稳态误差为

e[n]=T_{d}[n]-T_{m}[n]

于是我们把系统方程

T_{m}[n]=(1-\gamma K_{p}\Delta T-\Delta T\beta )T_{m}[n-1]+\gamma \Delta T K_{p} T_{d}[n-1]

化简为

-e[n]=-(1-\gamma K_{p}\Delta T-\Delta T\beta )e[n-1]-\Delta T \beta T_{d}[n-1]

当 n 趋近于无穷,方程化简为

e[\infty ]=\lambda e[\infty ]+\Delta T\beta T_{d}[\infty ]

于是

e[\infty ]=\frac{\Delta T\beta T_{d}[\infty ]}{1-\lambda }

e[\infty ] 就是稳态误差,我们接下来要分析它。为了保持稳定,\lambda 需要在 -1 到 1 之间,只要 \beta \neq 0 ,系统的稳态误差将一直存在。如果想让稳态误差最小,那么只能令 \lambda =-1 。在许多情况下,我们找不到能够最优化系统每一个方面的解。因此我们需要权衡,在设计控制器时要考虑需要收敛速度更快还是稳态误差更小。

四、稳态误差

基于先前的条件,我们能不能完全消除稳态误差?这时候我们就需要一个新的控制器了,比如将前馈控制器和 P 控制器组合到一起。

新控制器的方程如下:

u[n]=K_{ff}T_{d}[n]+K_{p}(T_{d}[n]-T_{m}[n])

现在我们要选择 2 个参数:Kff 和 Kp 。于是系统方程为

T_{m}[n]=(1-\gamma K_{p}\Delta T-\Delta T\beta )T_{m}[n-1]+\gamma \Delta T (K_{p}+K_{ff}) T_{d}[n-1]

e[n]=(1-\gamma K_{p}\Delta T-\Delta T\beta )e[n-1]+(-\gamma K_{ff}+\beta)\Delta T T_{d}[n-1]

e[n]=\lambda e[n-1]+(-\gamma K_{ff}+\beta)\Delta T T_{d}[n-1]

于是稳态误差为

e[\infty ]=\lambda e[\infty ]+(-\gamma K_{ff}+\beta)\Delta T T_{d}[\infty ]

e[\infty ]=\frac{(-\gamma K_{ff}+\beta)\Delta T T_{d}[\infty ]}{1-\lambda}

现在我们终于可以让稳态误差 e[\infty ] 等于 0 了。令

K_{ff}=\frac{\beta }{\gamma }

在这个新控制器中,我们选择 K_{p} 来优化收敛速度,选择 K_{ff} 来消除稳态误差。以后我们会介绍一些更加强大的控制器,例如比例-微分(PD)控制器和比例-积分-微分(PID)控制器。对一阶系统的仿真分析详见下回分解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值