自动控制原理学习笔记(十一)—— 传递函数、极点和固有频率的复习与拓展

前几节笔记如下:

自动控制原理学习笔记(一)—— 控制介绍,一阶离散系统-CSDN博客

自动控制原理学习笔记(二)—— 一阶离散系统的通解,稳定性和收敛性-CSDN博客

自动控制原理学习笔记(三)—— 一阶线性定常离散系统与稳态误差-CSDN博客

自动控制原理学习笔记(四)—— 一阶系统的实验表征和 MATLAB 仿真-CSDN博客

自动控制原理学习笔记(五)—— 二阶离散系统,比例控制和 PD 控制-CSDN博客

自动控制原理学习笔记(六)—— 使用 MATLAB 求解二阶系统,PID 控制介绍-CSDN博客

自动控制原理学习笔记(七)—— 离散系统函数-CSDN博客

自动控制原理学习笔记(八)—— 离散系统的传递函数和极点-CSDN博客

自动控制原理学习笔记(九)—— 从离散系统到连续系统-CSDN博客

自动控制原理学习笔记(十)—— 频率响应-CSDN博客

先以一道例题承上启下:

例 1 :下图为时域下某四个系统分别对应的阶跃响应:

        (1)哪个(些)阶跃响应对应的系统只有一个极点?

        (2)哪个(些)阶跃响应对应的系统只有两个实极点?

        (3)给定上图中某三个阶跃响应对应系统的传递函数分别为 H_{a}(s)=\frac{6s+2}{s^{2}+3s+2} ,H_{b}(s)=\frac{s+10}{s^{2}+2s+10} ,H_{c}(s)=\frac{3}{s+3} 。则它们分别与上图中某三个阶跃响应的对应关系为?

答案:(1)1        (2)2、3        (3)Map 5

一、连续系统拓展

某连续系统的极点可能为复数,以例 1 中传递函数 H_{b} 为例:

H_{b}(s)=\frac{s+10}{s^{2}+2s+10}=\frac{s+10}{(s+1+j3)(s+1-j3)}

p=-1\pm j3

于是,每一个复极点都对应一个复特征方程:e^{(-1\pm j3)t} 。但系统的阶跃响应却没有虚部,这又是为什么呢?

假设某连续系统的方框图只包括比较点、增益、微分或积分模块(之前提到过多次,本质上是线性定常(LTI)系统),我们认为,若复数 p 是该系统的极点,则其共轭复数 p^{*} 也是该系统的极点。

证明如下:令 D(s) 表示传递函数分母部分的多项式函数。由极点的定义得,若复数 p 是该系统的极点,则 D(p)=0 。由于多项式函数 D(p) 的系数全为实数,D(p^{*})=(D(p))^{*}=0^{*}=0 ,即共轭复数 p^{*} 也是该系统的极点。

更详细一点,我们令 p=\sigma +j\omega _{0} ,于是 p^{*}=\sigma -j\omega _{0} 。即:

(s-p)(s-p^{*})=s^{2}-2Re(p)s+\left | p \right |^{2}

显然,等式右边结果为实数,这也间接验证了我们的证明。

若系统只有一个复极点,则该系统的特征方程也是复变函数;若系统有两个复极点,且这两个极点共轭,则该系统的特征方程也是实数函数,计算过程如下。

H_{0}(s)+H_{1}(s)=\frac{1}{s^{2}-2\sigma s+\sigma ^{2}+\omega _{d}^{2}}

h_{0}(t)+h_{1}(t)=2e^{\sigma t}\cos (\omega _{d}t)

二、离散系统拓展

以下图二阶离散系统举例,假设该系统只有实极点,由于其阶跃响应是两个几何级数之和,该系统在时域下可能会出现“超调量”。

\frac{Y}{X}=\frac{42}{1-0.94R}-\frac{41}{1-0.92R}

同理,在连续系统中有时也会出现超调量。但我们千万不要把超调量与复极点产生的振荡混淆。

假设离散系统存在复极点,我们希望对该系统做分析,以如下系统为例:

\frac{Y}{X}=\frac{1}{1-R-R^{2}}=\frac{1}{1-\frac{1}{z}+\frac{1}{z^{2}}}=\frac{z^{2}}{z^{2}-z+1}

解得系统的极点为 z=\frac{1}{2}\pm j\frac{\sqrt{3}}{2} ,于是该系统的特征方程为 (\frac{1}{2}\pm j\frac{\sqrt{3}}{2})^{n} 。

复数的幂比较难计算,因此我们打算先将复数用极坐标形式表示。令某复极点为 z=a+jb ,则我们将其极坐标形式表示为 re^{j\theta } ,其中 r^{2}=a^{2}+b^{2} ,\tan \theta =\frac{b}{a} ,则系统的特征方程为 (re^{j\theta })^{n}=r^{n}e^{j\theta n} 。我们发现,当 n 线性增长时:

  • 系统特征方程的大小呈几何增长;
  • 角度 \theta n 呈线性增长。

举个例子,假设某系统的复极点为 re^{j\theta } ,其中 r=0.98 ,\theta =0.2 。则系统的特征方程为(re^{j\theta })^{n}=r^{n}e^{j\theta n} ,即第 n 个响应信号对应的方程。如下图所示:

  

我们想要证明前一节得出的结论在离散系统下也是正确的。即如果复数 p 是该系统的极点,则其共轭复数 p^{*} 也是该系统的极点。

证明如下:令 D(z) 表示传递函数分母部分的多项式函数。由极点的定义得,若复数 p 是该系统的极点,则 D(p)=0 。由于多项式函数 D(p) 的系数全为实数,D(p^{*})=(D(p))^{*}=0^{*}=0 ,即共轭复数 p^{*} 也是该系统的极点。

若离散系统有两个复极点,且这两个极点共轭,则该系统的特征方程也是实数函数。

(re^{j\theta })^{n}+(re^{-j\theta })^{n}=r^{n}2\cos \theta n

当 r=0.98 ,\theta =0.2 时,系统的特征方程如下图所示:

例 2 :假设某离散系统的极点为 z=re^{\pm j\Omega } ,该系统在时域下的阶跃响应如下图所示:

        则下列说法中正确的为:

        A. r<0.5 且 \Omega \approx 0.5

        B. 0.5<r<1 且 \Omega \approx 0.5

        C. r<0.5 且 \Omega \approx 0.08

        D. 0.5<r<1 且 \Omega \approx 0.08

答案:B

本章我们完善了对连续系统与离散系统的介绍,接下来我们会对频域分析法进行拓展,并介绍一种十分有用的分析方法 —— 伯德图,详见下回分解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值