自动控制原理学习笔记(九)—— 从离散系统到连续系统

前几节笔记如下:

自动控制原理学习笔记(一)—— 控制介绍,一阶离散系统-CSDN博客

自动控制原理学习笔记(二)—— 一阶离散系统的通解,稳定性和收敛性-CSDN博客

自动控制原理学习笔记(三)—— 一阶线性定常离散系统与稳态误差-CSDN博客

自动控制原理学习笔记(四)—— 一阶系统的实验表征和 MATLAB 仿真-CSDN博客

自动控制原理学习笔记(五)—— 二阶离散系统,比例控制和 PD 控制-CSDN博客

自动控制原理学习笔记(六)—— 使用 MATLAB 求解二阶系统,PID 控制介绍-CSDN博客

自动控制原理学习笔记(七)—— 离散系统函数-CSDN博客

自动控制原理学习笔记(八)—— 离散系统的传递函数和极点-CSDN博客

一、连续系统的导入

在绝大部分控制系统中,传感器和被控对象接收到的信号为连续信号,而控制器接收到传感器的采样信号为离散信号。因此我们需要针对不同类型的信号设计不同的系统。接下来我们以螺旋桨臂平衡系统为例来介绍连续系统,如下图所示。

我们详细绘制出螺旋桨臂平衡系统在离散时间下的方框图(暂时不要求掌握,只是举个例子):

该系统在连续时间下的方框图如下:

从方框图我们可以发现,在离散系统中,不同的输入信号存在时间间隔;而在连续系统中,时间间隔为零(类比数列与函数)。

二、差分方程和微分方程

离散系统一般使用差分方程来表示,例如:

y_{d}[n]=x_{d}[n]+py_{d}[n-1]

连续系统一般使用微分方程来表示,例如:

\frac{\mathrm{d} y_{c}(t)}{\mathrm{d} t}=x_{c}(t)+py_{c}(t)

例 1 :下列哪个系统方框图可以用如下差分方程表示?

y_{d}[n]=x_{d}[n]+py_{d}[n-1]

       A.                                                                                    B.

       C.                                                                                    D.

        

答案:B

例 2 :下列哪个系统方框图可以用如下微分方程表示?

\frac{\mathrm{d} y_{c}(t)}{\mathrm{d} t}=x_{c}(t)+py_{c}(t)

A.                                                                          B.

        

 C.                                                                          D.

        

答案:A

三、离散系统和连续系统

离散系统和连续系统可以用类似的方法进行分析。

从例题 1 可知,差分方程 y_{d}[n]=x_{d}[n]+py_{d}[n-1] 对应的离散系统方框图为:

从例题 2 可知,微分方程 \frac{\mathrm{d} y_{c}(t)}{\mathrm{d} t}=x_{c}(t)+py_{c}(t) 对应的连续系统方框图为:

在离散系统中,分别给比较点、增益和延时环节提供一个输入信号,若该输入信号与 z^{n} 成比例,则这些模块的输出信号也与 z^{n} 成比例,如下图所示:

即离散系统的特征方程为不同幂函数的和。

在连续系统中,分别给比较点、增益和延时环节提供一个输入信号,若该输入信号与 e^{st} 成比例,则这些模块的输出信号也与 ​​​​​​​e^{st} 成比例,如下图所示:

例 3 :给定离散系统的差分方程和连续系统的微分方程分别为:

y_{d}[n]=x_{d}[n]+py_{d}[n-1]

\frac{\mathrm{d} y_{c}(t)}{\mathrm{d} t}=x_{c}(t)+py_{c}(t)

        则下列说法中正确的为:

        A. 该离散系统和连续系统的固有频率和特征方程均相同。

        B. 该离散系统和连续系统的固有频率和系统方框图均相同。

        C. 该系统的响应只取决于 n(或 t )和 p 的大小。

        D. 两个系统的固有频率大小均为 p 。

答案:D

注意,在例 3 中,虽然两个系统的固有频率大小相等,但它们所在的系统不同,其表示的含义是不同的。

当离散系统的固有频率落在复平面的单位圆内(如下图阴影区域所示),离散系统才是稳定的(系统的零输入响应收敛至零)(详见第四章笔记末)。即当 \left | \lambda \right |<1 时,

\underset{n\rightarrow \infty }{\lim }y_{d}[n]=\underset{n\rightarrow \infty }{\lim }\lambda ^{n}=\underset{n\rightarrow \infty }{\lim }(\left | \lambda \right |e^{j\angle \lambda })^{n}=\underset{n\rightarrow \infty }{\lim }\left | \lambda \right |^{n}e^{jn\angle \lambda }=0

此外,若离散系统稳定:

  • 当 0<\left | \angle (\lambda ) \right |\leqslant \pi 时,离散系统的响应是振荡的;
  • 当 \angle (\lambda )=0 时,离散系统的响应是单调的;
  • 当 \angle (\lambda )=\pi 时,离散系统的响应是交错级数。

同理,当连续系统的固有频率落在复平面的左半平面内(如下图阴影区域所示),连续系统才是稳定的(系统的零输入响应收敛至零)(详见奥本海姆《信号与系统》拉普拉斯变换)。即当 a<0 时,

\underset{t\rightarrow \infty }{\lim }y_{c}(t)=\underset{t\rightarrow \infty }{\lim }e^{st}=\underset{t\rightarrow \infty }{\lim }e^{(a+jb)t}=\underset{t\rightarrow \infty }{\lim }e^{at}e^{jbt}=0

于是,

  • 当 Re(s)<0 时,连续系统的响应稳定;
  • 当 Im(s)\neq 0 时,连续系统的响应是振荡的;
  • 当 Re(s)=0 时,连续系统的响应是一个正弦信号。

例 4 :在下列图像中,复平面下的部分区域用红色阴影来表示:

(1)在哪些区域下,离散系统的响应稳定且振荡?

(2)在哪些区域下,连续系统的响应稳定且振荡?

答案:(1)ABFHL        (2)AC

四、连续系统的传递函数和极点

连续系统传递函数的计算方法与离散系统几乎无异(参考上一节笔记),以下图最简单的闭环系统为例:

Y=F(s)E=F(s)(X+G(s)Y)=F(s)X+F(s)G(s)Y

(1-F(s)G(s))Y=F(s)X

故该闭环系统的传递函数为:

H(R)=\frac{Y}{X}=\frac{F(s)}{1-F(s)G(s)}

我们想对一般情况下的闭环系统进行分析。假设某个闭环系统包含比较点、增益或微分(或积分)等环节,则该系统的传递函数一定可以用一个有理函数来表示:

H(s)=\frac{b_{0}+b_{1}s+b_{2}s^{2}+b_{3}s^{3}+...}{1+a_{1}s+a_{2}s^{2}+a_{3}s^{3}+...}

假设某个闭环系统的前向路径包含一个闭环环节,则该前向路径可以用一个有理函数 N_{1}(s)/D_{1}(s) 来表示;假设某个闭环系统的反向路径包含一个闭环环节,则该反向路径也可以用一个有理函数 ​​​​​​​N_{2}(s)/D_{2}(s) 来表示,如下图所示。

我们代入之前得到的闭环系统传递函数的公式,于是:

\frac{Y}{X}=\frac{\frac{N_{1}(s)}{D_{1}(s)}}{1-\frac{N_{1}(s)}{D_{1}(s)}\frac{N_{2}(s)}{D_{2}(s)}}=\frac{N_{1}(s)D_{2}(s)}{D_{1}(s)D_{2}(s)-N_{1}(s)N_{2}(s)}

由于有理函数的乘积是有理函数,故该系统的传递函数仍是有理函数。

现在我们得到了闭环系统的传递函数 H 为一个有理函数。要想得到系统的固有频率,我们需要把该传递函数拆分为部分分式。 

H(s)=\frac{b_{0}+b_{1}s+b_{2}s^{2}+b_{3}s^{3}+...}{1+a_{1}s+a_{2}s^{2}+a_{3}s^{3}+...}

化简,得:

H=\frac{Y}{X}=\frac{b_{0}+b_{1}s+b_{2}s^{2}+b_{3}s^{3}+...}{(s-p_{0})(s-p_{1})(s-p_{2})(s-p_{3})...}

部分分式展开,得:

H=\frac{Y}{X}=\frac{C_{0}}{s-p_{0}}+\frac{C_{1}}{s-p_{1}}+\frac{C_{2}}{s-p_{2}}+...+D_{0}+D_{1}s+D_{2}s^{2}+...

于是,s_{i}=p_{i} 为系统的极点,即系统的固有频率。

例 5 :假设表示某个控制系统的微分方程为:

\frac{\mathrm{d}^{2}y(t) }{\mathrm{d} t^{2}}+3\frac{\mathrm{d} y(t)}{\mathrm{d} t}+2y(t)=x(t)

        则下列说法中正确的有哪些?

        A. 若 x(t)=0 ,则 \underset{t\rightarrow \infty }{\lim }y(t)=0 。

        B. 该系统有两个极点。

        C. 该系统的极点为 s=1 和 s=2 。

        D. 该系统的阶跃响应是振荡的。

答案:AB

五、案例分析

我们回到最开始螺旋桨臂平衡系统的例子中,这次我们只截取其中的电机模块进行分析,如下图所示:

该子系统的输入为一个电压信号 c(t) ,输出为平衡臂的角加速度 \alpha _{a}(t) 。

当电压信号 c(t) 为常数 c_{0} 时,我们的目标是找到合适的参数 q ,使得系统的稳态响应 \alpha _{a}(\infty )=\gamma _{a}c_{0} ,其中 \gamma _{a} 为我们定义的参数值。

经过观察发现,若系统的输出信号为一个常数,则积分模块的输入信号为零;若积分模块的输入信号为零,则比较点的两个输入信号之和为零,即:

\beta \alpha _{a}(\infty )+q\gamma _{a}c_{0}=0

由于 \gamma _{a}c_{0}=\alpha _{a}(\infty ) ,代入化简得:

q=-\beta

接下来我们想知道这个系统的阶跃响应(下面计算如果使用拉普拉斯变换将更加容易,这里我们采用高等数学中的做法)。首先把描述系统的微分方程表示出来:

\frac{\mathrm{d} \alpha _{a}(t)}{\mathrm{d} t}=\beta \alpha _{a}(t)-\beta \gamma _{a}c(t)

假设平衡臂的角加速度初始条件为零,且当 t>0 时,输入信号 c(t)=1 。则我们假设输出信号 \alpha _{a}(t) 可以由齐次解和非齐次解共同组成。由于非齐次解 \alpha _{p}(t) 和输入信号都为常数,我们令 \alpha _{p}(t)=B 并代入到微分方程中,得到 B=\gamma _{a} 。

令输入信号 c(t)=0 ,我们再求解该微分方程的齐次解。

\frac{\mathrm{d} \alpha _{h}(t)}{\mathrm{d} t}=\beta \alpha _{h}(t)

当 t>0 时,我们令 \alpha _{h}(t)=Ae^{st} ,得:

sAe^{st}=\beta Ae^{st}

解得 s=\beta ,于是:

\alpha _{a}(t)=\alpha _{h}(t)+\alpha _{p}(t)=Ae^{\beta t}+\gamma _{a}

代入 \alpha _{a}(0)=0 ,得到系统的通解为:

\alpha _{a}(t)=\gamma _{a}(1-e^{\beta t})

即为系统的阶跃响应。当 \beta =-20 时,作出时域下的响应信号如下:

终于,我们已经完成了由离散系统到连续系统的转变,但我们对连续系统的认知依然有限。关于连续系统的频域分析法,详见下回分解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值