Dify Rag部署并集成在线Deepseek教程(Windows、部署Rag、安装Rag安装、安装Dify安装、安装ollama安装)

步骤

安装docker:https://www.docker.com/

安装ollama:https://ollama.com/

ollama部署deepseek:ollama run deepseek-r1:8b(我们跳过,使用在线deepseek api)

参考文章:https://ollama.com/library/deepseek-r1

安装Dify

参考步骤

参考安装步骤:https://github.com/langgenius/dify

git clone下载源码

https://github.com/langgenius/dify

git clone https://github.com/langgenius/dify.git

在这里插入图片描述

下了三次才下好:

在这里插入图片描述

在这里插入图片描述

到这个目录

dify\docker

在这里插入图片描述

执行操作

cd dify
cd docker
cp .env.example .env
docker compose up -d

windows上直接用键盘鼠标手动操作就行。

在这里插入图片描述

当前目录打开终端,执行:docker compose up -d

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

登录dify页面(先设置账户,然后登录)

http://localhost/install

在这里插入图片描述

关联deeepseek api

右上角账户,点击设置

在这里插入图片描述

点击模型供应商,选择深度求索,点击安装

在这里插入图片描述
在这里插入图片描述

设置api key

点击设置:
在这里插入图片描述

粘贴从deepseek官网拿到的api key,点击保存:

在这里插入图片描述

点击“系统模型设置”依次设置(如果没有显示就刷新下页面)

在这里插入图片描述
在这里插入图片描述
点击保存。

用ollama安装嵌入模型bge-m3

https://ollama.com/

在这里插入图片描述
在这里插入图片描述

ollama pull bge-m3

在这里插入图片描述

dify添加嵌入模型

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

bge-m3
http://host.docker.internal:11434

在这里插入图片描述

11434是ollama默认监听端口。

在这里插入图片描述

添加成功:
在这里插入图片描述

创建知识库

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

创建助手

在这里插入图片描述
在这里插入图片描述

在聊天助手中导入知识库数据

在这里插入图片描述
在这里插入图片描述

提问

在这里插入图片描述

查看prompt日志

在这里插入图片描述

查看引用信息

在这里插入图片描述

点击更新保存配置

在这里插入图片描述

<think>好的,我现在需要回答用户关于如何将本地Ollama部署DeepSeek模型进行集成的解决方案或指南的问题。首先,我需要回顾一下Ollama的基本使用方法,以及DeepSeek模型的特点。根据用户提供的引用资料,Ollama支持通过命令行拉取和运行模型,比如使用`ollama run deepseek-r1`这样的命令。同时,DeepSeek官网可能有相关的部署指南,需要结合这两部分的信息。 接下来,我应该分步骤来组织答案。首先是环境准备,确保Ollama已经正确安装且系统满足运行模型的硬件要求。然后,安装DeepSeek模型可能需要通过Ollama的命令行工具或者从官方网站下载。接下来是集成部分,可能需要通过API或者编写脚本调用本地运行的模型。此外,用户可能需要优化性能,比如调整线程数或量化模型。最后,验证集成是否成功,可能提供一些常见问题的解决方法。 需要注意的是,用户提供的引用中提到Ollama支持在ollama.com/search获取模型列表,而DeepSeek有本地部署的指南,因此需要确保步骤中引用这些资源。同时,要检查是否有遗漏的步骤,比如权限问题或者依赖安装。可能还需要提醒用户查阅官方文档以获取最新信息,因为工具和模型可能会有更新。 另外,用户的问题可能涉及到实际应用中的集成,比如如何将模型嵌入到现有的应用程序中,或者如何通过REST API进行调用。需要确认Ollama是否提供这样的接口,或者是否需要额外的配置。例如,Ollama可能提供本地服务器,监听某个端口,允许通过HTTP请求发送提示接收响应。 最后,确保回答结构清晰,分点说明,附上相关引用。同时,生成的相关问题需要围绕部署、优化、应用场景和故障排除展开,这样用户如果有进一步的问题,可以找到对应的信息。</think>### 如何集成本地 Ollama 部署 DeepSeek 解决方案指南 #### 一、环境准备与模型部署 1. **安装 Ollama** - 访问 Ollama 官网(https://ollama.com/download)下载对应操作系统的安装包,完成基础环境配置[^1]。 - 验证安装是否成功:终端输入 `ollama --version`,返回版本号即表示成功。 2. **获取 DeepSeek 模型** - 通过 Ollama 支持的模型列表(https://ollama.com/search)搜索 `deepseek-r1` 或其他 DeepSeek 系列模型。 - 使用命令行拉取模型: ```bash ollama pull deepseek-r1 ``` 3. **运行模型** - 启动本地模型服务: ```bash ollama run deepseek-r1 ``` - 输入测试提示(如“你好”),观察模型是否能正常生成响应。 --- #### 二、集成到本地应用 1. **通过 REST API 调用** Ollama 默认监听 `11434` 端口,可通过以下示例代码发送请求: ```python import requests response = requests.post( "http://localhost:11434/api/generate", json={ "model": "deepseek-r1", "prompt": "如何优化模型推理速度?", "stream": False } ) print(response.json()["response"]) ``` 2. **使用官方客户端库** 参考 Ollama Python 库(`pip install ollama`)简化调用: ```python import ollama response = ollama.generate(model="deepseek-r1", prompt="解释量子计算") print(response["response"]) ``` --- #### 三、性能优化与配置 1. **GPU 加速(如支持)** - 确保系统已安装 CUDA 驱动,启动 Ollama 时添加参数: ```bash OLLAMA_GPU_LAYERS=12 ollama run deepseek-r1 ``` - 调整 `GPU_LAYERS` 值以匹配显存容量[^2]。 2. **模型量化** 若资源有限,可使用低精度版本(如 4-bit 量化): ```bash ollama pull deepseek-r1:4b ``` 3. **线程数调整** 在启动命令中指定 CPU 线程数(例如 8 线程): ```bash OLLAMA_NUM_THREADS=8 ollama run deepseek-r1 ``` --- #### 四、验证与调试 1. **基础功能验证** - 运行 `ollama list` 确认模型已正确加载。 - 检查日志:`tail -f ~/.ollama/logs/server.log` 2. **压力测试** 使用 Apache Bench 模拟高发请求: ```bash ab -n 100 -c 10 -p prompt.json http://localhost:11434/api/generate ``` --- #### 五、扩展应用场景 1. **构建知识库助手** 通过 RAG(检索增强生成)架构,将模型与本地文档数据库(如 ChromaDB)结合。 2. **开发自动化工具** 集成到 CI/CD 流程中,实现代码审查、文档生成等任务。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dontla

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值