【考研数学】高等数学第三模块——积分学 | Part I 不定积分与Part II 定积分(产生背景及定义)

一、不定积分

1.1 基本概念

原函数—— f ( x ) , F ( x ) f(x),F(x) f(x),F(x) 为定义于 I I I 上的函数,若对一切的 x ∈ I x \in I xI ,有 F ( x ) ′ = f ( x ) F(x)'=f(x) F(x)=f(x) ,称 F ( x ) F(x) F(x) f ( x ) f(x) f(x) 的原函数。

1,连续函数是一定存在原函数的,但反之不对。同时我们也要记住,既然原函数可导,那原函数肯定也是连续的。
2,有第一类间断点的函数一定不存在原函数,但有第二类间断点的函数可能有原函数。
3,若 f ( x ) f(x) f(x) 有原函数,则它一定有无数个原函数,且任意两个原函数相差常数。可以说,不定积分就是将一个函数映射到它的原函数群。

不定积分—— F ( x ) F(x) F(x) f ( x ) f(x) f(x) 的一个原函数,则 f ( x ) f(x) f(x) 的所有原函数 F ( x ) + C F(x)+C F(x)+C 称为 f ( x ) f(x) f(x) 的不定积分,记为 ∫ f ( x ) d x = F ( x ) + C . \int f(x)dx=F(x)+C. f(x)dx=F(x)+C.

不定积分如如下性质:
在这里插入图片描述

1.2 不定积分基本公式与积分法

这是基本功了,不多赘述。 ∫ s e c x d x = l n ∣ s e c x + t a n x ∣ + C , ∫ c s c x d x = l n ∣ c s c x − c o t x ∣ + C \int secxdx=ln|secx+tanx|+C,\int cscx dx=ln|cscx-cotx|+C secxdx=lnsecx+tanx+Ccscxdx=lncscxcotx+C

我发现可能有些老师会让我们记住那些根号下变形的不定积分,如: ∫ d x x 2 + a 2 = 1 a a r c t a n x a + C \int \frac{dx}{x^2+a^2}= \frac{1}{a}arctan \frac{x}{a}+C x2+a2dx=a1arctanax+C
有很多这样积分变成反三角的,但是这些反三角又没啥规律,就算记住了,考试也不敢用。最后还是现场推,所以只要掌握了这样的一个推法,考试多花点时间推一推就好,省的纠结背的对不对。

积分法有凑微分和换元积分法,还有分部积分法。

1.3 两类重要函数的不定积分

1.3.1 有理函数

有理函数就是指两个多项式相除,比如: ∫ 5 x − 1 x 2 − x − 2 d x \int \frac{5x-1}{x^2-x-2}dx x2x25x1dx 当分子的次数小于分母的次数时,称该多项式为真分式,否则称为假分式。如上面的积分就是真分式。

  1. 对于真分式,一般分子不变,分母进行因式分解,最后拆成部分和形式。
  2. 对于假分式,一般将假分式拆成多项式加上真分式,再按照 1. 进行处理。

举个例子: ∫ 5 x − 1 x 2 − x − 2 d x = ∫ 5 x − 1 ( x + 1 ) ( x − 2 ) d x = 2 ∫ d x x + 1 d x + 3 ∫ d x x − 2 d x \int \frac{5x-1}{x^2-x-2}dx=\int \frac{5x-1}{(x+1)(x-2)}dx=2\int \frac{dx}{x+1}dx+3\int \frac{dx}{x-2}dx x2x25x1dx=(x+1)(x2)5x1dx=2x+1dxdx+3x2dxdx = 2 l n ∣ x + 1 ∣ + 3 l n ∣ x − 1 ∣ =2ln|x+1|+3ln|x-1| =2lnx+1∣+3lnx1∣ ∫ x 3 + 3 x 2 ( 1 + x ) d x = ∫ 1 + 3 − x 2 x 2 ( 1 + x ) d x = ∫ ( 1 + A x + B x + 1 + C x 2 ) d x \int \frac{x^3+3}{x^2(1+x)}dx=\int 1+ \frac{3-x^2}{x^2(1+x)}dx=\int (1+\frac{A}{x}+\frac{B}{x+1}+\frac{C}{x^2})dx x2(1+x)x3+3dx=1+x2(1+x)3x2dx=(1+xA+x+1B+x2C)dx用待定系数法求出 A , B , C A,B,C A,B,C 即可。最后的结果为 x − 3 l n ∣ x ∣ − 3 x + 2 l n ∣ x + 1 ∣ + C . x-3ln|x|- \frac{3}{x}+2ln|x+1|+C. x3lnxx3+2lnx+1∣+C.

1.3.2 三角有理函数

有一个万能公式,一般不采用。 令 t a n x 2 = u , s i n x = 2 u 1 + u 2 , c o s x = 1 − u 2 1 + u 2 . 令tan \frac{x}{2}=u,sinx=\frac{2u}{1+u^2},cosx=\frac{1-u^2}{1+u^2}. tan2x=u,sinx=1+u22u,cosx=1+u21u2.

二、定积分及其应用

2.1 定积分产生背景

2.1.1 运动问题的路程计算

设运动物体速度 v = v ( t ) ( t ∈ [ T 1 , T 2 ] v=v(t)(t \in [T_1,T_2] v=v(t)(t[T1,T2] ,求物体经过的路程。

(1)取 T 1 = t 0 < t 1 < ⋯ < t n = T 2 T_1=t_0<t_1<\dots<t_n=T_2 T1=t0<t1<<tn=T2 ,则 [ T 1 , T 2 ] = [ t 0 , t 1 ] ⋃ [ t 1 , t 2 ] ⋃ ⋯ ⋃ [ t n − 1 , t n ] [T_1,T_2]=[t_0,t_1] \bigcup [t_1,t_2] \bigcup\dots\bigcup[t_{n-1},t_n] [T1,T2]=[t0,t1][t1,t2][tn1,tn] ,其中 Δ t i = t i − t i − 1 . \Delta t_i=t_i-t_{i-1}. Δti=titi1.

T 1 T_1 T1 T 2 T_2 T2 这段时间,分为 n n n 个小段,每一小段的时长为 Δ t i . \Delta t_i. Δti.

(2)任取 τ i ∈ [ t i , t i − 1 ] \tau _i \in[t_i,t_{i-1}] τi[ti,ti1] Δ s i ≈ v ( τ i ) Δ t i \Delta s_i \approx v(\tau_i)\Delta t_i Δsiv(τi)Δti ,则 s ≈ ∑ i − 1 n v ( τ i ) Δ t i . s \approx \sum^n_{i-1}v(\tau_i)\Delta t_i. si1nv(τi)Δti.

任取一小段时长中的某一个时刻,可近似计算出该小段物体运动的距离,则总距离可近似为每一个小段运动距离之和。

(3)取 λ = m a x ( Δ t i ) \lambda=max(\Delta t_i) λ=max(Δti) ,则路程精确值为: s = lim ⁡ λ → 0 ∑ i = 1 n v ( τ i ) Δ t i . s=\lim_{\lambda\to0}\sum^n_{i=1}v(\tau_i)\Delta t_i. s=λ0limi=1nv(τi)Δti.

λ \lambda λ 来表征分成这些小区间的大小,当最大的小区间都趋于 0 时,说明已经分的足够细了,用极限来精确。此时物体运动距离可求得精确值为各小段运动距离之和。

2.1.2 曲边梯形的面积

这个也是利用这样的分成无数个小段的思想,当每一个小段无穷小时,取极限可以得到总面积的精确值。

2.2 定积分的定义

将上述实际问题抽象为一个通用函数模型,可得到定积分的定义如下。

y = f ( x ) ( x ∈ [ a , b ] ) y=f(x) (x\in[a,b]) y=f(x)(x[a,b]) 有界,
(1)取 a = x 0 < x 1 < ⋯ < x n = b a=x_0<x_1<\dots<x_n=b a=x0<x1<<xn=b ,则 [ a , b ] = [ x 0 , x 1 ] ⋃ [ x 1 , x 2 ] ⋃ ⋯ ⋃ [ x n − 1 , x n ] [a,b]=[x_0,x_1] \bigcup [x_1,x_2] \bigcup\dots\bigcup [x_{n-1},x_n] [a,b]=[x0,x1][x1,x2][xn1,xn] ,其中 Δ x i = x i − x i − 1 ; \Delta x_i=x_i-x_{i-1}; Δxi=xixi1;
(2)任取 ξ i ∈ [ x i , x i − 1 ] \xi _i \in[x_i,x_{i-1}] ξi[xi,xi1] Δ s i ≈ v ( ξ i ) Δ x i \Delta s_i \approx v(\xi_i)\Delta x_i Δsiv(ξi)Δxi ,则 s ≈ ∑ i − 1 n v ( ξ i ) Δ x i ; s \approx \sum^n_{i-1}v(\xi_i)\Delta x_i; si1nv(ξi)Δxi;
(3)取 λ = m a x ( Δ x i ) \lambda=max(\Delta x_i) λ=max(Δxi) ,若极限 lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i . \lim_{\lambda\to0}\sum^n_{i=1}f(\xi_i)\Delta x_i. λ0limi=1nf(ξi)Δxi. 存在,称 f ( x ) f(x) f(x) 在区间 [ a , b ] [a,b] [a,b] 上可积,称该极限为 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上的定积分,记为 ∫ a b f ( x ) d x \int_a^b f(x)dx abf(x)dx ,即有: ∫ a b f ( x ) d x = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i . \int_a^bf(x)dx=\lim_{\lambda\to0}\sum^n_{i=1}f(\xi_i)\Delta x_i. abf(x)dx=λ0limi=1nf(ξi)Δxi.

1, ∫ a a f ( x ) d x = 0 , ∫ b a f ( x ) d x = − ∫ a b f ( x ) d x . \int_a^a f(x)dx=0,\int_b^a f(x)dx=-\int_a^b f(x)dx. aaf(x)dx=0,baf(x)dx=abf(x)dx.
2,若 f ( x ) f(x) f(x) 在区间 [ a , b ] [a,b] [a,b] 上连续或只有第一类间断点,则 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上可积。
3,定积分的值与区间的分法无关,比如我可以等分,也可以随心分。也与 ξ i \xi _i ξi 在小区间内的取值无关,我可以取左端点,也可以取右端点,还可以取中心、四分点之类的。
4,有界不一定可积,如狄利克雷函数, ξ i \xi _i ξi 取有理数得到一个值,取无理数又得到一个值。
5,对于极限: lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i . \lim_{\lambda\to0}\sum^n_{i=1}f(\xi_i)\Delta x_i. λ0limi=1nf(ξi)Δxi. λ → 0 \lambda \to 0 λ0 n → ∞ n\to \infty n 不是等价的。前者可以推出后者,但后者不能推出前者。即将区间分为无穷个小区间,不一定足够精确,也就不一定能使用定积分。我可以第一个区间取一半,后面的区间在另一半区间分成无穷个。
7,定积分几何意义为函数与 x x x 轴所围面积。在上方为正,下方为负。

若函数 f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1] 上可积,这可不得了,请看我的。

在这里插入图片描述

定积分关于奇偶性的一些结论如下: f ( x ) 为奇函数 → ∫ a x f ( x ) d x 为偶函数 f(x)为奇函数\to \int_a^x f(x)dx为偶函数 f(x)为奇函数axf(x)dx为偶函数 f ( x ) f(x) f(x) 为偶函数无法得到原函数为奇函数,只能得到积分下限为 0 的原函数为奇函数。

写在最后

关于定积分的基本性质与理论,以及广义积分和应用,放在下一篇文章。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
C语言是一种广泛使用的编程语言,它具有高效、灵活、可移植性强等特点,被广泛应用于操作系统、嵌入式系统、数据库、编译器等领域的开发。C语言的基本语法包括变量、数据类型、运算符、控制结构(如if语句、循环语句等)、函数、指针等。在编写C程序时,需要注意变量的声明和定义、指针的使用、内存的分配与释放等问题。C语言中常用的数据结构包括: 1. 数组:一种存储同类型数据的结构,可以进行索引访问和修改。 2. 链表:一种存储不同类型数据的结构,每个节点包含数据和指向下一个节点的指针。 3. 栈:一种后进先出(LIFO)的数据结构,可以通过压入(push)和弹出(pop)操作进行数据的存储和取出。 4. 队列:一种先进先出(FIFO)的数据结构,可以通过入队(enqueue)和出队(dequeue)操作进行数据的存储和取出。 5. 树:一种存储具有父子关系的数据结构,可以通过中序遍历、前序遍历和后序遍历等方式进行数据的访问和修改。 6. 图:一种存储具有节点和边关系的数据结构,可以通过广度优先搜索、深度优先搜索等方式进行数据的访问和修改。 这些数据结构在C语言中都有相应的实现方式,可以应用于各种不同的场景。C语言中的各种数据结构都有其优缺点,下面列举一些常见的数据结构的优缺点: 数组: 优点:访问和修改元素的速度非常快,适用于需要频繁读取和修改数据的场合。 缺点:数组的长度是固定的,不适合存储大小不固定的动态数据,另外数组在内存中是连续分配的,当数组较大时可能会导致内存碎片化。 链表: 优点:可以方便地插入和删除元素,适用于需要频繁插入和删除数据的场合。 缺点:访问和修改元素的速度相对较慢,因为需要遍历链表找到指定的节点。 栈: 优点:后进先出(LIFO)的特性使得栈在处理递归和括号匹配等问题时非常方便。 缺点:栈的空间有限,当数据量较大时可能会导致栈溢出。 队列: 优点:先进先出(FIFO)的特性使得

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Douglassssssss

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值