格拉姆矩阵(Gram matrix)详细解读

一、基础知识-向量的内积

1.1 向量的内积定义:也叫向量的点乘,对两个向量执行内积运算,就是对这两个向量对应位一一相乘之后求和的操作,内积的结果是一个标量。

1.2 实例

a和b的内积公式为:

1.3 作用

内积判断向量a和向量b之间的夹角和方向关系

  • a·b>0    方向基本相同,夹角在0°到90°之间
  • a·b=0    正交,相互垂直  
  • a·b<0    方向基本相反,夹角在90°到180°之间 

Gram矩阵是两两向量的内积组成,所以Gram矩阵可以反映出该组向量中各个向量之间的某种关系

二、Gram matrix介绍

2.1 定义

n维欧式空间中任意k个向量之间两两的内积所组成的矩阵,称为这k个向量的格拉姆矩阵(Gram matrix),很明显,这是一个对称矩阵。

更加直观的理解:

2.2 计算和特征表示

输入图像的feature map为[ ch, h, w]。我们经过flatten(即是将h*w进行平铺成一维向量)和矩阵转置操作,可以变形为[ ch, h*w]和[ h*w, ch]的矩阵。再对两个作内积得到Gram Matrices。 (蓝色条表示每个通道flatten后特征点,最后得到 [ch *ch ]的G矩阵)

2.3 进一步理解

格拉姆矩阵可以看做feature之间的偏心协方差矩阵(即没有减去均值的协方差矩阵),在feature map中,每个数字都来自于一个特定滤波器在特定位置的卷积,因此每个数字代表一个特征的强度,而Gram计算的实际上是两两特征之间的相关性,哪两个特征是同时出现的,哪两个是此消彼长的等等。

格拉姆矩阵用于度量各个维度自己的特性以及各个维度之间的关系。内积之后得到的多尺度矩阵中,对角线元素提供了不同特征图各自的信息,其余元素提供了不同特征图之间的相关信息。这样一个矩阵,既能体现出有哪些特征,又能体现出不同特征间的紧密程度。

关键点:gram矩阵是计算每个通道 i 的feature map与每个通道 j 的feature map的内积。gram matrix的每个值可以说是代表 I 通道的feature map与 j 通道的feature map的互相关程度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值