[系统安全] 三十三.恶意代码检测(3)基于机器学习的恶意代码检测技术

本文深入探讨了基于机器学习的恶意代码检测技术,涵盖机器学习概念、算法举例,如SVM、神经网络,以及静态动态检测方法。通过特征工程选取关键特征,如字节码、IAT表、API调用关系等,利用深度学习方法如CNN、LSTM进行恶意代码的静态和动态分析。尽管静态分析速度快,但易受加壳等干扰,动态分析虽提供行为特征但耗时较长。文章还讨论了机器学习在工业界的应用及挑战,强调了模型的可解释性和误报率的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

您可能之前看到过我写的类似文章,为什么还要重复撰写呢?只是想更好地帮助初学者了解病毒逆向分析和系统安全,更加成体系且不破坏之前的系列。因此,我重新开设了这个专栏,准备系统整理和深入学习系统安全、逆向分析和恶意代码检测,“系统安全”系列文章会更加聚焦,更加系统,更加深入,也是作者的慢慢成长史。换专业确实挺难的,逆向分析也是块硬骨头,但我也试试,看看自己未来四年究竟能将它学到什么程度,漫漫长征路,偏向虎山行。享受过程,一起加油~

前文从总结恶意代码检测技术,包括恶意代码检测的对象和策略、特征值检测技术、校验和检测技术、启发式扫描技术、虚拟机检测技术和主动防御技术。这篇文章将介绍基于机器学习的恶意代码检测技术,主要参考郑师兄的视频总结,包括机器学习概述与算法举例、基于机器学习方法的恶意代码检测、机器学习算法在工业界的应用。同时,我再结合自己的经验进行扩充,详细分享了基于机器学习的恶意代码检测技术,基础性文章,希望对您有所帮助~

作者作为网络安全的小白,分享一些自学基础教程给大家,主要是关于安全工具和实践操作的在线笔记,希望您们喜欢。同时,更希望您能与我一起操作和进步,后续将深入学习网络安全和系统安全知识并分享相关实验。总之,希望该系列文章对博友有所帮助,写文不易,大神们不喜勿喷,谢谢!如果文章对您有帮助,将是我创作的最大动力,点赞、评论、私聊均可,一起加油喔!

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eastmount

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值