[系统安全] 五十二.DataCon竞赛 (1)2020年Coremail钓鱼邮件识别及分类详解

您可能之前看到过我写的类似文章,为什么还要重复撰写呢?只是想更好地帮助初学者了解病毒逆向分析和系统安全,更加成体系且不破坏之前的系列。因此,我重新开设了这个专栏,准备系统整理和深入学习系统安全、逆向分析和恶意代码检测,“系统安全”系列文章会更加聚焦,更加系统,更加深入,也是作者的慢慢成长史。换专业确实挺难的,逆向分析也是块硬骨头,但我也试试,看看自己未来四年究竟能将它学到什么程度,漫漫长征路,偏向虎山行。享受过程,一起加油~

前文详细介绍如何构建深度学习模型实现恶意软件家族分类,这是安全领域典型的任务或工作。这篇文章是作者2020年参加清华大学、Coremail、奇安信DataCon举办的比赛,主要是关于钓鱼和异常邮件识别研究。非常感谢举办方让我们学到了新知识,DataCon也是我比较喜欢和推荐的大数据安全比赛,这篇文章2020年10月就进了我的草稿箱,但由于小珞珞刚出生,所以今天才发表,希望对您有所帮助!感恩同行,不负青春,且看且珍惜!

在这里插入图片描述

微步情报局C&C资产进行拓线关联发现 “白象三代”组织在2019年期间用于钓鱼攻

  • 5
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
恭喜您获得域名_DataCon 2020 DNS恶意域名分析方向冠军!以下是您的writeup: 赛题概述: 本次比赛的任务是对一组恶意域名进行分析。每个参赛者需要对提供的数据集进行分析,从中筛选出恶意域名,并对这些域名进行分类分析和解释。数据集包括了近期出现的一些恶意域名,其中一部分已被官方确认。 分析流程: 1. 数据集的基本情况分析 首先,对数据集进行一些基本的统计分析,比如恶意域名的数量、出现频率、域名长度、TLD分布等等。这些分析可以帮助我们初步了解数据集的特点,为后续的分析提供一些指导。 2. 特征提取 在数据集分析的基础上,我们需要对每个域名进行特征提取。常用的特征包括域名长度、字符集分布、TLD类型、子域名数量、字母频率等等。提取出来的特征可以作为后续模型训练的输入。 3. 恶意域名分类 接下来,我们需要对每个域名进行分类分类的目的是将恶意域名和正常域名分离开来,为后续的分析提供基础。常用的分类方法包括传统的机器学习分类算法(如决策树、SVM等)和深度学习分类算法(如CNN、LSTM等)。 4. 恶意域名分析 分类完成后,我们需要对恶意域名进行进一步的分析。具体来说,我们需要分析每个恶意域名的类型、攻击方式、受害者等等。这些分析可以帮助我们更好地了解恶意域名的本质和特点,为后续的防御工作提供指导。 5. 结果展示 最后,我们需要将分析结果进行展示。可以采用报告、PPT、图表等多种形式来呈现分析结果。同时,也可以将分析结果与其他团队进行交流,分享经验、互相学习。 总结: 通过对数据集的分析和特征提取,我们可以将恶意域名和正常域名分离开来,并进行进一步的分类分析。这些工作可以帮助我们更好地了解恶意域名的本质和特点,为后续的防御工作提供指导。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eastmount

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值