[python] Kmeans文本聚类算法+PAC降维+Matplotlib显示聚类图像

本文介绍了如何使用Python的scikit-learn库进行KMeans文本聚类,并结合PAC降维方法将文本数据转换为二维显示。通过Matplotlib展示聚类效果,适用于文本相似度计算和文本聚类的初学者学习。
摘要由CSDN通过智能技术生成

0 前言

本文主要讲述以下几点:

        1.通过scikit-learn计算文本内容的tfidf并构造N*M矩阵(N个文档 M个特征词)
        2.调用

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eastmount

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值