第三章 微分中值定理与导数的应用

目录

习题3-1 微分中值定理

我们先讲罗尔(Rolle)定理,然后根据它推出拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理。——高等数学同济版

  本节主要讲述微分中值定理及其证明,习题以证明题为主。

6.证明恒等式: arcsin ⁡ x + a r c c o s x = π 2 ( − 1 ⩽ x ⩽ 1 ) . \arcsin x+arccos x=\cfrac{\pi}{2}(-1\leqslant x\leqslant1). arcsinx+arccosx=2π(1x1).

  取函数 f ( x ) = arcsin ⁡ x + a r c c o s x , x ∈ [ − 1 , 1 ] f(x)=\arcsin x+arccos x,x\in[-1,1] f(x)=arcsinx+arccosx,x[1,1]。因
f ′ ( x ) = 1 1 − x 2 − 1 1 − x 2 ≡ 0 , f'(x)=\cfrac{1}{\sqrt{1-x^2}}-\cfrac{1}{\sqrt{1-x^2}}\equiv0, f(x)=1x2 11x2 10,
  故 f ( x ) ≡ 0 f(x)\equiv0 f(x)0。取 x = 0 x=0 x=0,得 f ( 0 ) = C = π 2 f(0)=C=\cfrac{\pi}{2} f(0)=C=2π。因此
arcsin ⁡ x + a r c c o s x = π 2 , x ∈ [ − 1 , 1 ] . \arcsin x+arccos x=\cfrac{\pi}{2},\qquad x\in[-1,1]. arcsinx+arccosx=2π,x[1,1].
证明不等式首先构造函数,利用函数求解

13.设 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导,证明在 ( a , b ) (a,b) (a,b)内有一点 ξ \xi ξ,使 ∣ f ( a ) f ( b ) g ( a ) g ( b ) ∣ = ( b − a ) ∣ f ( a ) f ′ ( ξ ) g ( a ) g ′ ( ξ ) ∣ . \begin{vmatrix}f(a)&f(b)\\g(a)&g(b)\end{vmatrix}=(b-a)\begin{vmatrix}f(a)&f'(\xi)\\g(a)&g'(\xi)\end{vmatrix}. f(a)g(a)f(b)g(b)=(ba)f(a)g(a)f(ξ)g(ξ).

  取函数 F ( x ) = ∣ f ( a ) f ( x ) g ( a ) g ( x ) ∣ F(x)=\begin{vmatrix}f(a)&f(x)\\g(a)&g(x)\end{vmatrix} F(x)=f(a)g(a)f(x)g(x),由 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导知 F ( x ) F(x) F(x) [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导,由拉格朗日中值定理知,至少存在一点 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b),使 F ( a ) − F ( b ) = F ′ ( ξ ) ( b − a ) F(a)-F(b)=F'(\xi)(b-a) F(a)F(b)=F(ξ)(ba)。即
F ( b ) = ∣ f ( a ) f ( b ) g ( a ) g ( b ) ∣ , F ( a ) = ∣ f ( a ) f ( a ) g ( a ) g ( a ) ∣ F ′ ( x ) = ∣ f ( 0 ) f ( x ) g ( 0 ) g ( x ) ∣ + ∣ f ( a ) f ′ ( x ) g ( a ) g ′ ( x ) ∣ = ∣ f ( a ) f ′ ( x ) g ( a ) g ′ ( x ) ∣ , F(b)=\begin{vmatrix}f(a)&f(b)\\g(a)&g(b)\end{vmatrix},\quad F(a)=\begin{vmatrix}f(a)&f(a)\\g(a)&g(a)\end{vmatrix}\\ F'(x)=\begin{vmatrix}f(0)&f(x)\\g(0)&g(x)\end{vmatrix}+\begin{vmatrix}f(a)&f'(x)\\g(a)&g'(x)\end{vmatrix}=\begin{vmatrix}f(a)&f'(x)\\g(a)&g'(x)\end{vmatrix}, F(b)=f(a)g(a)f(b)g(b),F(a)=f(a)g(a)f(a)g(a)F(x)=f(0)g(0)f(x)g(x)+f(a)g(a)f(x)g(x)=f(a)g(a)f(x)g(x),
  故
∣ f ( a ) f ( b ) g ( a ) g ( b ) ∣ = ∣ f ( a ) f ′ ( ξ ) g ( a ) g ′ ( ξ ) ∣ ( b − a ) . \begin{vmatrix}f(a)&f(b)\\g(a)&g(b)\end{vmatrix}=\begin{vmatrix}f(a)&f'(\xi)\\g(a)&g'(\xi)\end{vmatrix}(b-a). f(a)g(a)f(b)g(b)=f(a)g(a)f(ξ)g(ξ)(ba).
利用行列式求导法则求导,当函数 f ( x ) = ∣ f 11 ( x ) f 12 ( x ) ⋯ f 1 n ( x ) f 21 ( x ) f 22 ( x ) ⋯ f 2 n ( x ) ⋮ ⋮ ⋮ f n 1 ( x ) f n 2 ( x ) ⋯ f n n ( x ) ∣ f(x)=\begin{vmatrix} f_{11}(x)&f_{12}(x)&\cdots&f_{1n}(x)\\ f_{21}(x)&f_{22}(x)&\cdots&f_{2n}(x)\\ \vdots&\vdots& &\vdots\\ f_{n1}(x)&f_{n2}(x)&\cdots&f_{nn}(x)\\ \end{vmatrix} f(x)=f11(x)f21(x)fn1(x)f12(x)f22(x)fn2(x)f1n(x)f2n(x)fnn(x)时, f ′ ( x ) = ∑ i = 1 n ∣ f 11 ( x ) f 12 ( x ) ⋯ f 1 n ( x ) ⋮ ⋮ ⋮ f i 1 ′ ( x ) f i 2 ′ ( x ) ⋯ f i n ′ ( x ) ⋮ ⋮ ⋮ f n 1 ( x ) f n 2 ( x ) ⋯ f n n ( x ) ∣ f'(x)=\overset{n}{\underset{i=1}{\sum}}\begin{vmatrix} f_{11}(x)&f_{12}(x)&\cdots&f_{1n}(x)\\ \vdots&\vdots & &\vdots\\ f'_{i1}(x)&f'_{i2}(x)&\cdots&f'_{in}(x)\\ \vdots&\vdots&&\vdots\\ f_{n1}(x)&f_{n2}(x)&\cdots&f_{nn}(x)\\ \end{vmatrix} f(x)=i=1nf11(x)fi1(x)fn1(x)f12(x)fi2(x)fn2(x)f1n(x)fin(x)fnn(x) f ‘ ( x ) = ∑ i = 1 n ∣ f 11 ( x ) ⋯ f 1 i ′ ( x ) ⋯ f 1 n ( x ) f 21 ( x ) ⋯ f 2 i ′ ( x ) ⋯ f 2 n ( x ) ⋮ ⋮ ⋮ f n 1 ( x ) ⋯ f n i ′ ( x ) ⋯ f n n ( x ) ∣ f‘(x)=\overset{n}{\underset{i=1}{\sum}}\begin{vmatrix} f_{11}(x)&\cdots&f'_{1i}(x)&\cdots&f_{1n}(x)\\ f_{21}(x)&\cdots&f'_{2i}(x)&\cdots&f_{2n}(x)\\ \vdots&\vdots& &\vdots\\ f_{n1}(x)&\cdots&f'_{ni}(x)&\cdots&f_{nn}(x)\\ \end{vmatrix} f(x)=i=1nf11(x)f21(x)fn1(x)f1i(x)f2i(x)fni(x)f1n(x)f2n(x)fnn(x)

14.证明:若函数 f ( x ) f(x) f(x) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)内满足关系式 f ′ ( x ) = f ( x ) f'(x)=f(x) f(x)=f(x),且 f ( 0 ) = 1 f(0)=1 f(0)=1,则 f ( x ) = e x f(x)=e^x f(x)=ex

  取函数 F ( x ) = f ( x ) e x F(x)=\cfrac{f(x)}{e^x} F(x)=exf(x),因
F ′ ( x ) = f ′ ( x ) e x − f ( x ) e x e 2 x = f ′ ( x ) − f ( x ) e x = 0. F'(x)=\cfrac{f'(x)e^x-f(x)e^x}{e^{2x}}=\cfrac{f'(x)-f(x)}{e^x}=0. F(x)=e2xf(x)exf(x)ex=exf(x)f(x)=0.
  故 F ( x ) = C F(x)=C F(x)=C。又 F ( x ) = C = f ( 0 ) = 1 F(x)=C=f(0)=1 F(x)=C=f(0)=1,因此 F ( x ) = 1 F(x)=1 F(x)=1,即 f ( x ) e x = 1 \cfrac{f(x)}{e^x}=1 exf(x)=1,故 f ( x ) = e x f(x)=e^x f(x)=ex
构造函数使函数恒等于常数,再证明函数成立

15.设函数 y = f ( x ) y=f(x) y=f(x) x = 0 x=0 x=0的某邻域内具有 n n n导数,且 f ( 0 ) = f ′ ( 0 ) = ⋯ = f ( n − 1 ) ( 0 ) = 0 f(0)=f'(0)=\cdots=f^{(n-1)}(0)=0 f(0)=f(0)==f(n1)(0)=0,试用柯西中值定理证明: f ( x ) x n = f ( n ) ( θ x ) n ! ( 0 < θ < 1 ) . \cfrac{f(x)}{x^n}=\cfrac{f^{(n)}(\theta x)}{n!}\qquad(0<\theta<1). xnf(x)=n!f(n)(θx)(0<θ<1).

  已知 f ( x ) f(x) f(x) x = 0 x=0 x=0的某邻域内具有 n n n导数,在该邻域内任取点 x x x,由柯西中值定理得
f ( x ) x n = f ( x ) − f ( 0 ) x n − 0 n = f ′ ( ξ 1 ) n ξ 1 n − 1 , \cfrac{f(x)}{x^n}=\cfrac{f(x)-f(0)}{x^n-0^n}=\cfrac{f'(\xi_1)}{n\xi^{n-1}_1}, xnf(x)=xn0nf(x)f(0)=nξ1n1f(ξ1),
  其中 ξ 1 \xi_1 ξ1介于 0 , x 0,x 0,x之间。又
f ′ ( ξ 1 ) n ξ 1 n − 1 = f ′ ( ξ 1 ) − f ′ ( 0 ) n ( ξ 1 n − 1 − 0 n − 1 ) = f ′ ′ ( ξ 2 ) n ( n − 1 ) ξ 2 n − 2 , \cfrac{f'(\xi_1)}{n\xi^{n-1}_1}=\cfrac{f'(\xi_1)-f'(0)}{n(\xi^{n-1}_1-0^{n-1})}=\cfrac{f''(\xi_2)}{n(n-1)\xi^{n-2}_2}, nξ1n1f(ξ1)=n(ξ1n10n1)f(ξ1)f(0)=n(n1)ξ2n2f(ξ2),
  其中 ξ 2 \xi_2 ξ2介于 0 , ξ 1 0,\xi_1 0,ξ1之间。依此类推,得
f ( n − 1 ) ( ξ n − 1 ) n ! ξ n − 1 = f ( n − 1 ) ( ξ n − 1 ) − f ( n − 1 ) ( 0 ) n ! ( ξ n − 1 − 0 ) = f ( n ) ( ξ n ) n ! , \cfrac{f^{(n-1)}(\xi_{n-1})}{n!\xi_{n-1}}=\cfrac{f^{(n-1)}(\xi_{n-1})-f^{(n-1)}(0)}{n!(\xi_{n-1}-0)}=\cfrac{f^{(n)}(\xi_n)}{n!}, n!ξn1f(n1)(ξn1)=n!(ξn10)f(n1)(ξn1)f(n1)(0)=n!f(n)(ξn),
  其中 ξ n \xi_n ξn介于 0 , ξ n − 1 0,\xi_{n-1} 0,ξn1之间,记 ξ n = θ x ( 0 < θ < 1 ) \xi_n=\theta x(0<\theta<1) ξn=θx(0<θ<1),因此
f ( x ) x n = f ( n ) ( ξ n ) n ! = f ( n ) ( θ x ) n ! ( 0 < θ < 1 ) . \cfrac{f(x)}{x^n}=\cfrac{f^{(n)}(\xi_n)}{n!}=\cfrac{f^{(n)}(\theta x)}{n!}\quad(0<\theta<1). xnf(x)=n!f(n)(ξn)=n!f(n)(θx)(0<θ<1).
利用柯西中值定理逐阶推导至一般规律

习题3-2 洛必达法则

  本节主要介绍洛必达法则及其应用。

1.用洛必达法则求下列极限:

(12) lim ⁡ x → 0 x 2 e 1 x 2 ; \lim\limits_{x\to0}x^2e^{\frac{1}{x^2}}; x0limx2ex21;


lim ⁡ x → 0 x 2 e 1 x 2 = lim ⁡ x → 0 e 1 x 2 1 x 2 = lim ⁡ x → 0 e 1 x 2 ( 1 x 2 ) ′ ( 1 x 2 ) ′ = lim ⁡ x → 0 e 1 x 2 = + ∞ . \lim\limits_{x\to0}x^2e^{\frac{1}{x^2}}=\lim\limits_{x\to0}\cfrac{e^{\frac{1}{x^2}}}{\cfrac{1}{x^2}}=\lim\limits_{x\to0}\cfrac{e^{\frac{1}{x^2}}\left(\cfrac{1}{x^2}\right)'}{\left(\cfrac{1}{x^2}\right)'}=\lim\limits_{x\to0}e^{\frac{1}{x^2}}=+\infty. x0limx2ex21=x0limx21ex21=x0lim(x21)ex21(x21)=x0limex21=+.
求解该极限时先构造可以用洛必达法则求解的形式,对于相同的部分抵消

(14) lim ⁡ x → ∞ ( 1 + a x ) x ; \lim\limits_{x\to\infty}\left(1+\cfrac{a}{x}\right)^x; xlim(1+xa)x;

   lim ⁡ x → ∞ ( 1 + a x ) x = e lim ⁡ x → ∞ x ln ⁡ ( 1 + a x ) \lim\limits_{x\to\infty}\left(1+\cfrac{a}{x}\right)^x=e^{\lim\limits_{x\to\infty}x\ln\left(1+\cfrac{a}{x}\right)} xlim(1+xa)x=exlimxln(1+xa),而
lim ⁡ x → ∞ x ln ⁡ ( 1 + a x ) = lim ⁡ x → ∞ ln ⁡ ( 1 + a x ) 1 x = lim ⁡ x → ∞ 1 1 + a x ⋅ ( − a x 2 ) − 1 x 2 = lim ⁡ x → ∞ a 1 + a x = a . \lim\limits_{x\to\infty}x\ln\left(1+\cfrac{a}{x}\right)=\lim\limits_{x\to\infty}\cfrac{\ln\left(1+\cfrac{a}{x}\right)}{\cfrac{1}{x}}=\lim\limits_{x\to\infty}\cfrac{\cfrac{1}{1+\cfrac{a}{x}}\cdot\left(-\cfrac{a}{x^2}\right)}{-\cfrac{1}{x^2}}=\lim\limits_{x\to\infty}\cfrac{a}{1+\cfrac{a}{x}}=a. xlimxln(1+xa)=xlimx1ln(1+xa)=xlimx211+xa1(x2a)=xlim1+xaa=a.
  故 lim ⁡ x → ∞ ( 1 + a x ) x = e a \lim\limits_{x\to\infty}\left(1+\cfrac{a}{x}\right)^x=e^a xlim(1+xa)x=ea。(这道题将指数中的变量转移,使之构造成可以使用洛必达法则的形式

(15) lim ⁡ x → 0 + x sin ⁡ x ; \lim\limits_{x\to0^+}x^{\sin x}; x0+limxsinx;

   lim ⁡ x → 0 + x sin ⁡ x = e lim ⁡ x → 0 + sin ⁡ x ln ⁡ x \lim\limits_{x\to0^+}x^{\sin x}=e^{\lim\limits_{x\to0^+}\sin x\ln x} x0+limxsinx=ex0+limsinxlnx,而
lim ⁡ x → 0 + sin ⁡ x ln ⁡ x = lim ⁡ x → 0 + sin ⁡ x x ⋅ ln ⁡ x 1 x = lim ⁡ x → 0 + 1 x − 1 x 2 = lim ⁡ x → 0 + ( − x ) = 0 , \lim\limits_{x\to0^+}\sin x\ln x=\lim\limits_{x\to0^+}\cfrac{\sin x}{x}\cdot\cfrac{\ln x}{\cfrac{1}{x}}=\lim\limits_{x\to0^+}\cfrac{\cfrac{1}{x}}{-\cfrac{1}{x^2}}=\lim\limits_{x\to0^+}(-x)=0, x0+limsinxlnx=x0+limxsinxx1lnx=x0+limx21x1=x0+lim(x)=0,
  故 lim ⁡ x → 0 + x sin ⁡ x = e 0 = 1 \lim\limits_{x\to0^+}x^{\sin x}=e^0=1 x0+limxsinx=e0=1这道题同(14)题

(16) lim ⁡ x → 0 + ( 1 x ) tan ⁡ x . \lim\limits_{x\to0^+}\left(\cfrac{1}{x}\right)^{\tan x}. x0+lim(x1)tanx.


lim ⁡ x → 0 + ( 1 x ) tan ⁡ x = e lim ⁡ x → 0 + tan ⁡ x ln ⁡ 1 x = e lim ⁡ x → 0 + tan ⁡ x x ⋅ − ln ⁡ x 1 x = e lim ⁡ x → 0 + − 1 x − 1 x 2 = e lim ⁡ x → 0 + x = e 0 = 1. \lim\limits_{x\to0^+}\left(\cfrac{1}{x}\right)^{\tan x}=e^{\lim\limits_{x\to0^+}\tan x\ln\cfrac{1}{x}}=e^{\lim\limits_{x\to0^+}\frac{\tan x}{x}\cdot\frac{-\ln x}{\frac{1}{x}}}=e^{\lim\limits_{x\to0^+}\cfrac{-\frac{1}{x}}{-\frac{1}{x^2}}}=e^{\lim\limits_{x\to0^+}x}=e^0=1. x0+lim(x1)tanx=ex0+limtanxlnx1=ex0+limxtanxx1lnx=ex0+limx21x1=ex0+limx=e0=1.
这道题同(14)题

4.讨论函数 f ( x ) = { [ ( 1 + x ) 1 x e ] 1 x , x > 0 , e − 1 2 , x ⩽ 0 f(x)=\begin{cases}\left[\cfrac{(1+x)^{\frac{1}{x}}}{e}\right]^{\frac{1}{x}},&x>0,\\e^{-\frac{1}{2}},&x\leqslant0\end{cases} f(x)=[e(1+x)x1]x1,e21,x>0,x0在点 x = 0 x=0 x=0处的连续性。


lim ⁡ x → 0 + f ( x ) = lim ⁡ x → 0 + [ ( 1 + x ) 1 x e ] 1 x = e lim ⁡ x → 0 + 1 x ln ⁡ [ ( 1 + x ) 1 x e ] , \lim\limits_{x\to0^+}f(x)=\lim\limits_{x\to0^+}\left[\cfrac{(1+x)^{\frac{1}{x}}}{e}\right]^{\frac{1}{x}}=e^{\lim\limits_{x\to0^+}\frac{1}{x}\ln\left[\frac{(1+x)^{\frac{1}{x}}}{e}\right]}, x0+limf(x)=x0+lim[e(1+x)x1]x1=ex0+limx1ln[e(1+x)x1],
  而
lim ⁡ x → 0 + 1 x [ 1 x ln ⁡ ( 1 + x ) − 1 ] = lim ⁡ x → 0 + ln ⁡ ( x + 1 ) − x x 2 = lim ⁡ x → 0 + 1 1 + x − 1 2 x = lim ⁡ x → 0 + − 1 2 ( 1 + x ) = − 1 2 , \begin{aligned} \lim\limits_{x\to0^+}\frac{1}{x}\left[\frac{1}{x}\ln(1+x)-1\right]&=\lim\limits_{x\to0^+}\cfrac{\ln(x+1)-x}{x^2}=\lim\limits_{x\to0^+}\cfrac{\cfrac{1}{1+x}-1}{2x}\\&=\lim\limits_{x\to0^+}-\cfrac{1}{2(1+x)}=-\cfrac{1}{2},\end{aligned} x0+limx1[x1ln(1+x)1]=x0+limx2ln(x+1)x=x0+lim2x1+x11=x0+lim2(1+x)1=21,
  故
lim ⁡ x → 0 + f ( x ) = e − 1 2 , \lim\limits_{x\to0^+}f(x)=e^{-\frac{1}{2}}, x0+limf(x)=e21,
  又
lim ⁡ x → 0 − f ( x ) = lim ⁡ x → 0 − e − 1 2 = e − 1 2 , f ( 0 ) = e − 1 2 . \lim\limits_{x\to0^-}f(x)=\lim\limits_{x\to0^-}e^{-\frac{1}{2}}=e^{-\frac{1}{2}},f(0)=e^{-\frac{1}{2}}. x0limf(x)=x0lime21=e21,f(0)=e21.
  因为 lim ⁡ x → 0 + f ( x ) = lim ⁡ x → 0 − f ( x ) = f ( 0 ) \lim\limits_{x\to0^+}f(x)=\lim\limits_{x\to0^-}f(x)=f(0) x0+limf(x)=x0limf(x)=f(0),故函数 f ( x ) f(x) f(x) x = 0 x=0 x=0处连续。(这道题同1.(14)题

习题3-3 泰勒公式

  本节主要介绍泰勒公式及其应用。

10.利用泰勒公式求下列极限:

(1) lim ⁡ x → + ∞ ( x 3 + 3 x 2 3 − x 4 − 2 x 3 4 ) \lim\limits_{x\to+\infty}(\sqrt[3]{x^3+3x^2}-\sqrt[4]{x^4-2x^3}) x+lim(3x3+3x2 4x42x3 )


lim ⁡ x → + ∞ ( x 3 + 3 x 2 3 − x 4 − 2 x 3 4 ) = lim ⁡ x → + ∞ x [ ( 1 + 3 x ) 1 3 − ( 1 − 2 x ) 1 4 ] = lim ⁡ x → + ∞ x [ 1 + 1 3 ⋅ 3 x + ο ( 1 x ) − 1 + 1 4 ⋅ 2 x + ο ( 1 x ) ] = lim ⁡ x → + ∞ [ 3 2 + ο ( 1 x ) 1 x ] = 3 2 . \begin{aligned}\lim\limits_{x\to+\infty}(\sqrt[3]{x^3+3x^2}-\sqrt[4]{x^4-2x^3})&=\lim\limits_{x\to+\infty}x\left[\left(1+\cfrac{3}{x}\right)^{\cfrac{1}{3}}-\left(1-\cfrac{2}{x}\right)^{\cfrac{1}{4}}\right]\\ &=\lim\limits_{x\to+\infty}x\left[1+\cfrac{1}{3}\cdot\cfrac{3}{x}+\omicron\left(\cfrac{1}{x}\right)-1+\cfrac{1}{4}\cdot\cfrac{2}{x}+\omicron\left(\cfrac{1}{x}\right)\right]\\&=\lim\limits_{x\to+\infty}\left[\cfrac{3}{2}+\cfrac{\omicron\left(\cfrac{1}{x}\right)}{\cfrac{1}{x}}\right]=\cfrac{3}{2}.\end{aligned} x+lim(3x3+3x2 4x42x3 )=x+limx(1+x3)31(1x2)41=x+limx[1+31x3+ο(x1)1+41x2+ο(x1)]=x+lim23+x1ο(x1)=23.
这道题主要利用泰勒公式展开化简

习题3-4 函数的单调性与曲线的凹凸性

  本节主要介绍了函数单调性的判断、拐点的判断和凹凸性的判断。

习题3-5 函数的极值与最大值最小值

  本节主要介绍函数的极值与最大值最小值的求法。

4.设函数 f ( x ) f(x) f(x) x 0 x_0 x0处有 n n n阶导数,且 f ′ ( x 0 ) = f ′ ′ ( x 0 ) = ⋯ = f ( n − 1 ) ( x 0 ) = 0 f'(x_0)=f''(x_0)=\cdots=f^{(n-1)}(x_0)=0 f(x0)=f(x0)==f(n1)(x0)=0 f ( n ) ( x 0 ) ≠ 0 f^{(n)}(x_0)\ne0 f(n)(x0)=0,证明:

(1)当 n n n为奇数时, f ( x ) f(x) f(x) x 0 x_0 x0处不取得极值;

  由含佩亚诺余项的 n n n阶泰勒公式及已知条件,得
f ( x ) = f ( x 0 ) + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + ο ( ( x − x 0 ) n ) , f(x)=f(x_0)+\cfrac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\omicron\left((x-x_0)^n\right), f(x)=f(x0)+n!f(n)(x0)(xx0)n+ο((xx0)n),
  即 f ( x ) − f ( x 0 ) = f ( n ) ( x 0 ) n ! ( x − x 0 ) n + ο ( ( x − x 0 ) n ) f(x)-f(x_0)=\cfrac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\omicron\left((x-x_0)^n\right) f(x)f(x0)=n!f(n)(x0)(xx0)n+ο((xx0)n),由此式可知 f ( x ) − f ( x 0 ) f(x)-f(x_0) f(x)f(x0) x 0 x_0 x0某邻域内的符号由 f ( n ) ( x 0 ) n ! ( x − x 0 ) n \cfrac{f^{(n)}(x_0)}{n!}(x-x_0)^n n!f(n)(x0)(xx0)n x 0 x_0 x0某邻域内的符号决定。
  (1)当 n n n为奇数时, ( x − x 0 ) n (x-x_0)^n (xx0)n x 0 x_0 x0两侧异号,所以 f ( n ) ( x 0 ) n ! ( x − x 0 ) n \cfrac{f^{(n)}(x_0)}{n!}(x-x_0)^n n!f(n)(x0)(xx0)n x 0 x_0 x0两侧异号,从而 f ( x ) − f ( x 0 ) f(x)-f(x_0) f(x)f(x0) x 0 x_0 x0两侧异号,故 f ( x ) f(x) f(x) x 0 x_0 x0处不取得极值。

(2)当 n n n为偶数时, f ( x ) f(x) f(x) x 0 x_0 x0处取得极值,且当 f ( n ) ( x 0 ) < 0 f^{(n)}(x_0)<0 f(n)(x0)<0时, f ( x ) f(x) f(x)为极大值,当 f ( n ) ( x 0 ) > 0 f^{(n)}(x_0)>0 f(n)(x0)>0时, f ( x ) f(x) f(x)为极小值。

  (2)当 n n n为偶数时,在 x 0 x_0 x0两侧 ( x − x 0 ) n > 0 (x-x_0)^n>0 (xx0)n>0,若 f ( n ) ( x 0 ) < 0 f^{(n)}(x_0)<0 f(n)(x0)<0,则 f ( n ) ( x 0 ) n ! ( x − x 0 ) n < 0 \cfrac{f^{(n)}(x_0)}{n!}(x-x_0)^n<0 n!f(n)(x0)(xx0)n<0,从而 f ( x ) − f ( x 0 ) < 0 f(x)-f(x_0)<0 f(x)f(x0)<0,即 f ( x ) < f ( x 0 ) f(x)<f(x_0) f(x)<f(x0),故 f ( x ) f(x) f(x)为极大值;若 f ( n ) ( x 0 ) > 0 f^{(n)}(x_0)>0 f(n)(x0)>0,则 f ( n ) ( x 0 ) n ! ( x − x 0 ) n > 0 \cfrac{f^{(n)}(x_0)}{n!}(x-x_0)^n>0 n!f(n)(x0)(xx0)n>0,从而 f ( x ) − f ( x 0 ) > 0 f(x)-f(x_0)>0 f(x)f(x0)>0,即 f ( x ) > f ( x 0 ) f(x)>f(x_0) f(x)>f(x0),故 f ( x ) f(x) f(x)为极小值。
这道题是导数和泰勒公式的综合应用

习题3-6 函数图形的描绘

  本节主要介绍函数画图的方法,该部分作为考纲一部分内容,但实际考可能不多。(我猜的,没有任何依据) 步骤记录如下:

  1. 确定函数 f ( x ) f(x) f(x)的定义域及函数所具有的某些特性(如奇偶性、周期性等),并求出函数的一阶导数 f ′ ( x ) f'(x) f(x)和二阶导数 f ′ ′ ( x ) f''(x) f(x);
  2. 求出一阶导数 f ′ ( x ) f'(x) f(x)和二阶导数 f ′ ′ ( x ) f''(x) f(x)的全部零点,并求出函数 f ( x ) f(x) f(x)的间断点及 f ′ ( x ) f'(x) f(x) f ′ ′ ( x ) f''(x) f(x)不存在的点,用这些点把函数的定义域划分成几个部分区间;
  3. 确定这些部分区间内 f ′ ( x ) f'(x) f(x) f ′ ′ ( x ) f''(x) f(x)的符号,并由此确定函数图形的升降、凹凸和拐点;
  4. 确定函数图形的水平、铅直渐近线以及其他变化趋势;
  5. 算出 f ′ ( x ) f'(x) f(x) f ′ ′ ( x ) f''(x) f(x)的零点以及不存在的点所对应的函数值,定出图形上相对应的点;为了把图形描绘得准确些,有时还需要补充一些点,然后结合第三四步中得到的结果,联结这些点画出函数 y = f ( x ) y=f(x) y=f(x)的图形。——高等数学同济版

习题3-7 曲率

  本节主要介绍弧微分、曲率、曲率圆、曲率半径及其计算公式。书中提及的曲率中心及渐曲线与渐伸线没有在考纲中明确提及。

曲率
K = ∣ y ′ ′ ∣ ( 1 + y ′ 2 ) 3 2 K=\cfrac{|y''|}{\left(1+y'^2\right)^{\frac{3}{2}}} K=(1+y2)23y
曲率半径
ρ = 1 K \rho=\cfrac{1}{K} ρ=K1

习题3-8 方程的近似解

  本节主要介绍了方程的近似解的求法(包括二分法、切线法和割线法),但在考纲中并未提及该节。

总习题三

3.列举一个函数 f ( x ) f(x) f(x)满足 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内除了某一点处处可导,但在 ( a , b ) (a,b) (a,b)内不存在点 ξ \xi ξ,使 f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) f(b)-f(a)=f'(\xi)(b-a) f(b)f(a)=f(ξ)(ba)

  取 f ( x ) = ∣ x ∣ f(x)=|x| f(x)=x,区间为 [ − 1 , 1 ] [-1,1] [1,1]。函数 f ( x ) f(x) f(x) [ − 1 , 1 ] [-1,1] [1,1]上连续,在 ( − 1 , 1 ) (-1,1) (1,1)内除点 x = 0 x=0 x=0外处处可导,但 f ( x ) f(x) f(x) ( − 1 , 1 ) (-1,1) (1,1)内不存在点 ξ \xi ξ,使 f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0,即不存在 ξ ∈ ( − 1 , 1 ) \xi\in(-1,1) ξ(1,1),使 f ( 1 ) − f ( − 1 ) = f ′ ( ξ ) [ 1 − ( − 1 ) ] f(1)-f(-1)=f'(\xi)[1-(-1)] f(1)f(1)=f(ξ)[1(1)]。(这个函数比较难以想到,该情况多出现在分段函数中

6.设 a 0 + a 1 2 + ⋯ + a n n + 1 = 0 a_0+\cfrac{a_1}{2}+\cdots+\cfrac{a_n}{n+1}=0 a0+2a1++n+1an=0,证明多项式 f ( x ) = a 0 + a 1 x + ⋯ + a n x n f(x)=a_0+a_1x+\cdots+a_nx^n f(x)=a0+a1x++anxn ( 0 , 1 ) (0,1) (0,1)内至少有一个零点。

  取函数 F ( x ) = a 0 x + a 1 2 x 2 + ⋯ + a n n + 1 x n + 1 F(x)=a_0x+\cfrac{a_1}{2}x^2+\cdots+\cfrac{a_n}{n+1}x^{n+1} F(x)=a0x+2a1x2++n+1anxn+1 F ( x ) F(x) F(x) [ 0 , 1 ] [0,1] [0,1]上连续,在 ( 0 , 1 ) (0,1) (0,1)内可导,且 F ( 0 ) = 0 , F ( 1 ) = a 0 + a 1 2 + ⋯ + a n n + 1 = 0 F(0)=0,F(1)=a_0+\cfrac{a_1}{2}+\cdots+\cfrac{a_n}{n+1}=0 F(0)=0,F(1)=a0+2a1++n+1an=0,由罗尔定理知至少存在一点 ξ ∈ ( − 1 , 1 ) \xi\in(-1,1) ξ(1,1),使 F ′ ( ξ ) = 0 F'(\xi)=0 F(ξ)=0,即多项式 f ( x ) = a 0 + a 1 x + ⋯ + a n x n f(x)=a_0+a_1x+\cdots+a_nx^n f(x)=a0+a1x++anxn ( 0 , 1 ) (0,1) (0,1)内至少有一个零点。(这道题难点主要在构造函数

8.设 0 < a < b 0<a<b 0<a<b,函数 f ( x ) f(x) f(x)满足 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导,试利用柯西中值定理,证明存在一点 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b),使 f ( b ) − f ( a ) = ξ f ′ ( ξ ) ln ⁡ b a . f(b)-f(a)=\xi f'(\xi)\ln\cfrac{b}{a}. f(b)f(a)=ξf(ξ)lnab.

  取函数 F ( x ) = ln ⁡ x F(x)=\ln x F(x)=lnx f ( x ) f(x) f(x) F ( x ) F(x) F(x) [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导,且 F ′ ( x ) = 1 x ≠ 0 , x ∈ ( a , b ) F'(x)=\cfrac{1}{x}\ne0,x\in(a,b) F(x)=x1=0,x(a,b)。由柯西中值定理知至少存在一点 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b),使
f ( b ) − f ( a ) F ( b ) − F ( a ) = f ′ ( ξ ) F ′ ( ξ ) . \cfrac{f(b)-f(a)}{F(b)-F(a)}=\cfrac{f'(\xi)}{F'(\xi)}. F(b)F(a)f(b)f(a)=F(ξ)f(ξ).
  即 f ( b ) − f ( a ) ln ⁡ b − ln ⁡ a = f ′ ( ξ ) 1 ξ . \cfrac{f(b)-f(a)}{\ln b-\ln a}=\cfrac{f'(\xi)}{\cfrac{1}{\xi}}. lnblnaf(b)f(a)=ξ1f(ξ).
  亦即 f ( b ) − f ( a ) = ξ f ′ ( ξ ) ln ⁡ b a f(b)-f(a)=\xi f'(\xi)\ln\cfrac{b}{a} f(b)f(a)=ξf(ξ)lnab。(这道题主要考察构造函数以及等式变换

9.设 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)都是可导函数,且 ∣ f ′ ( x ) ∣ < g ′ ( x ) |f'(x)|<g'(x) f(x)<g(x),证明:当 x > a x>a x>a时, ∣ f ( x ) − f ( a ) ∣ < g ( x ) − g ( a ) . |f(x)-f(a)|<g(x)-g(a). f(x)f(a)<g(x)g(a).

  取 F ( x ) = f ( x ) − g ( x ) , G ( x ) = f ( x ) + g ( x ) , x ∈ ( a , + ∞ ) F(x)=f(x)-g(x),G(x)=f(x)+g(x),x\in(a,+\infty) F(x)=f(x)g(x),G(x)=f(x)+g(x),x(a,+)。由 ∣ f ′ ( x ) ∣ < g ′ ( x ) |f'(x)|<g'(x) f(x)<g(x)
f ′ ( x ) − g ′ ( x ) < 0 , f ′ ( x ) + g ′ ( x ) > 0 , f'(x)-g'(x)<0,\qquad f'(x)+g'(x)>0, f(x)g(x)<0,f(x)+g(x)>0,
  故 F ′ ( x ) = f ′ ( x ) − g ′ ( x ) < 0 , G ′ ( x ) = f ′ ( x ) + g ′ ( x ) > 0 F'(x)=f'(x)-g'(x)<0,G'(x)=f'(x)+g'(x)>0 F(x)=f(x)g(x)<0,G(x)=f(x)+g(x)>0,即当 x > a x>a x>a时,函数 F ( x ) F(x) F(x)单调减少, G ( x ) G(x) G(x)单调增加。因此
F ( x ) < F ( a ) , G ( x ) > G ( a ) ( x > a ) . F(x)<F(a),\qquad G(x)>G(a)(x>a). F(x)<F(a),G(x)>G(a)(x>a).
  从而
f ( x ) − g ( x ) < f ( a ) − g ( a ) , f ( x ) + g ( x ) > f ( a ) + g ( a ) ( x > a ) . f(x)-g(x)<f(a)-g(a),f(x)+g(x)>f(a)+g(a)\qquad(x>a). f(x)g(x)<f(a)g(a),f(x)+g(x)>f(a)+g(a)(x>a).
  即当 x > a x>a x>a时, ∣ f ( x ) − f ( a ) ∣ < g ( x ) − g ( a ) . |f(x)-f(a)|<g(x)-g(a). f(x)f(a)<g(x)g(a).这道题主要考察绝对值的不等式展开

13.设 a > 1 a>1 a>1 f ( x ) = a x − a x f(x)=a^x-ax f(x)=axax ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)内的驻点为 x ( a ) x(a) x(a)。问 a a a为何值时, x ( a ) x(a) x(a)最小?并求出最小值。

  由 f ′ ( x ) = a x ln ⁡ a − a = 0 f'(x)=a^x\ln a-a=0 f(x)=axlnaa=0,得唯一驻点
x ( a ) = 1 − ln ⁡ ln ⁡ a ln ⁡ a . x(a)=1-\cfrac{\ln\ln a}{\ln a}. x(a)=1lnalnlna.
  考察函数 x ( a ) = 1 − ln ⁡ ln ⁡ a ln ⁡ a x(a)=1-\cfrac{\ln\ln a}{\ln a} x(a)=1lnalnlna a > 1 a>1 a>1时的最小值。令
x ′ ( a ) = − 1 a − 1 a ln ⁡ ln ⁡ a ( ln ⁡ a ) 2 = − 1 − ln ⁡ ln ⁡ a a ( ln ⁡ a ) 2 = 0 , x'(a)=-\cfrac{\cfrac{1}{a}-\cfrac{1}{a}\ln\ln a}{(\ln a)^2}=-\cfrac{1-\ln\ln a}{a(\ln a)^2}=0, x(a)=(lna)2a1a1lnlna=a(lna)21lnlna=0,
得唯一驻点, a = e e a=e^e a=ee。当 a > e e a>e^e a>ee时, x ′ ( a ) > 0 x'(a)>0 x(a)>0;当 a < e e a<e^e a<ee时, x ′ ( a ) < 0 x'(a)<0 x(a)<0,因此
x ( e e ) = 1 − 1 e x(e^e)=1-\cfrac{1}{e} x(ee)=1e1
为极小值,也是最小值。(在对 x ( a ) x(a) x(a)求导时,注意在 a a a在底数和真数中,求导时要注意

14.求椭圆 x 2 − x y + y 2 = 0 x^2-xy+y^2=0 x2xy+y2=0上纵坐标最大和最小的点。

  在椭圆方程两端分别对 x x x求导,得
2 x − y − x y ′ + 2 y y ′ = 0 , y ′ = y − 2 x 2 y − x . 2x-y-xy'+2yy'=0,\\ y'=\cfrac{y-2x}{2y-x}. 2xyxy+2yy=0,y=2yxy2x.
  令 y ′ = 0 y'=0 y=0,得 y = 2 x y=2x y=2x。将 y = 2 x y=2x y=2x代入椭圆方程后得 x 2 = 1 x^2=1 x2=1,故 x = ± 1 x=\pm1 x=±1。从而得到椭圆上的点 ( 1 , 2 ) , ( − 1 , − 2 ) (1,2),(-1,-2) (1,2),(1,2)。根据题意即知点 ( 1 , 2 ) , ( − 1 , − 2 ) (1,2),(-1,-2) (1,2),(1,2)为椭圆 x 2 − x y + y 2 = 0 x^2-xy+y^2=0 x2xy+y2=0上纵坐标最大和最小的点。(这道题需要仔细审题,题目中明确说明函数形状为椭圆,根据几何知识可知,在椭圆上纵坐标最大和最小的点处极值为0。函数图形和纵坐标最大和最小的点处的切线如下图所示
在这里插入图片描述

20.试确定常数 a a a b b b,使 f ( x ) = x − ( a + b cos ⁡ x ) sin ⁡ x f(x)=x-(a+b\cos x)\sin x f(x)=x(a+bcosx)sinx为当 x → 0 x\to0 x0时关于 x x x的5阶无穷小。

  利用泰勒公式
f ( x ) = x − a sin ⁡ x − b 2 sin ⁡ 2 x = x − a [ x − x 3 3 ! + x 5 5 ! + ο ( x 5 ) ] − b 2 [ 2 x − ( 2 x ) 3 3 ! + ( 2 x ) 5 5 ! ο ( x 5 ) ] = ( 1 − a − b ) x + ( a 6 + 2 b 3 ) x 3 − ( a 120 + 2 b 15 ) x 5 + ο ( x 5 ) . \begin{aligned} f(x)&=x-a\sin x-\cfrac{b}{2}\sin2x\\ &=x-a\left[x-\cfrac{x^3}{3!}+\cfrac{x^5}{5!}+\omicron(x^5)\right]-\cfrac{b}{2}\left[2x-\cfrac{(2x)^3}{3!}+\cfrac{(2x)^5}{5!}\omicron(x^5)\right]\\ &=(1-a-b)x+\left(\cfrac{a}{6}+\cfrac{2b}{3}\right)x^3-\left(\cfrac{a}{120}+\cfrac{2b}{15}\right)x^5+\omicron(x^5). \end{aligned} f(x)=xasinx2bsin2x=xa[x3!x3+5!x5+ο(x5)]2b[2x3!(2x)3+5!(2x)5ο(x5)]=(1ab)x+(6a+32b)x3(120a+152b)x5+ο(x5).
  按题意,应有
{ 1 − a − b = 0 , a 6 + 2 b 3 = 0 , a 120 + 2 b 15 ≠ 0 , \begin{cases} 1-a-b=0,\\ \cfrac{a}{6}+\cfrac{2b}{3}=0,\\ \cfrac{a}{120}+\cfrac{2b}{15}\ne0, \end{cases} 1ab=0,6a+32b=0,120a+152b=0,
a = 4 3 , b = − 1 3 a=\cfrac{4}{3},b=-\cfrac{1}{3} a=34,b=31。因此,当 a = 4 3 , b = − 1 3 a=\cfrac{4}{3},b=-\cfrac{1}{3} a=34,b=31时, f ( x ) = x − ( a + b cos ⁡ x ) sin ⁡ x f(x)=x-(a+b\cos x)\sin x f(x)=x(a+bcosx)sinx是当 x → 0 x\to0 x0时关于 x x x的5阶无穷小。(这道题主要考察三角函数的泰勒展开式

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值