4060显卡+LLaMA-Factory微调LLM环境准备——(一)安装cuda

本地配置

系统:win10
**硬件:**i5-12490f+RTX4060

安装原因:

最近尝试在本地对开源LLM进行Fine-tune的时候,用到了LLaMA-Factory,在运行的时候,弹出未检测到GPU,后来才发现,是忘记安装cuda等环境导致的
LLaMA-Factory: https://github.com/hiyouga/LLaMA-Factory

本地测试方法:

GPU:

import torch
print(torch.cuda.is_available())  # 是否可以用gpu False不能,True可以
print(torch.cuda.device_count())  # gpu数量, 0就是没有,1就是检测到了

Cuda:

nvcc -V

出现以下内容,说明你本机安装过cuda了
image.png

安装过程:

安装前先简单了解下什么是cuda

CUDA(ComputeUnified Device Architecture),是显卡厂商NVIDIA推出的运算平台。CUDA是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。
安装前先安装VS Community,因为不安装的话,直接安装Cuda会报错
下载链接: https://my.visualstudio.com/Downloads?PId=8228
下载前需要注册登陆账号,目前可以下载的版本可能只有2022版的,不过问题不大,也可以用
image.png
安装过程是傻瓜式操作,在选择工作负荷的时候,选C++桌面端开发
image.png
安装完成后,登录自己的账号(下载前注册的账号),然后关闭即可

去Nvidia 官网,下载CUDA:

https://developer.nvidia.com/cuda-12-2-0-download-archive?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exe_local
因为llama-factory要求的版本是11.8-12.2的,索性就下载安装一个12.2的版本
image.png
下载的文件大约3G左右
image.png
整个安装过程,也是傻瓜式操作,自定义安装中,可以看到安装CUDA的选项
image.png
后面一只下一步就好,安装完成后需要设置环境变量,一般默认安装路径都是一样的
image.png
设置好后,测试安装是否成功,如果出现下图,看到Build cuda_12.2表示安装成功了
image.png

这里大家可能有疑问,nvidia-smi执行后,右上角也会出现一个CUDA Version: 12.5, 这两个cuda版本有什么区别,其实CUDA有runtime api 和 driver api, nvcc -V显示的是runtime api, nvidia-smi显示的是 driver api, runtime api 是CUDA Toolkit install 安装的, driver api是GPU driver installer安装的, 所以这两个东西安装上并没有什么太大的关系
唯一需要注意的是,一般nvidia-smi的版本需要大于 nvcc -V显示的版本,像我安装的12.5>12.2,使用起来没有什么大问题
image.png

<think>好的,我现在要解决用户的问题:在使用LLaMA-Factory进行训练时遇到检测CUDA环境的问题。首先,我需要了解这个问题的可能原因以及如何排查。根据用户提供的引用内容,特别是引用[2]和引用[3],可能需要从环境配置、CUDA可见性、依赖安装等方面入手。 首先,用户提到引用[2]中启动网页时使用了CUDA_VISIBLE_DEVICES=5,6,7的命令,这说明用户可能是在多GPU环境下运行,但可能没有正确设置CUDA环境变量,导致训练时检测不到CUDA。此外,引用[3]提到了克隆仓库和安装必要的库,可能涉及到PyTorch版本是否正确安装CUDA支持的版本。 接下来,我需要考虑几个可能的解决步骤。第步是验证CUDA是否安装正确。用户可以通过运行nvidia-smi和nvcc --version来检查CUDA驱动和工具包是否存在。如果这些命令无法执行,说明CUDA没有正确安装或者路径配置,需要重新安装或添加路径。 第二步是检查PyTorch是否支持CUDA。用户应该确认安装的是GPU版本的PyTorch,可以通过pip list查看已安装的版本,并运行Python代码import torch; print(torch.cuda.is_available())来验证。如果返回False,可能需要重新安装PyTorch,确保与CUDA版本兼容。 第三步是设置CUDA_VISIBLE_DEVICES环境变量。引用[2]中提到启动时指定了可见的GPU,所以用户需要确认在训练脚本或命令行中正确设置了该变量。例如,使用CUDA_VISIBLE_DEVICES=0,1,2 python train.py这样的命令,或者在代码中使用os.environ["CUDA_VISIBLE_DEVICES"] = "0"。 第四步是检查LLaMA-Factory的依赖是否正确安装。用户需要进入项目目录,运行pip install -r requirements.txt,确保所有依赖项都已安装,特别是与CUDA相关的库。有时候,某些依赖可能需要特定版本的CUDA工具包,所以需要确认版本匹配。 第五步是更新显卡驱动。过时的驱动可能导致CUDA无法被检测到,因此建议用户更新到最新版本,并重启系统。 第六步是检查训练脚本的配置。用户需要查看配置文件或命令行参数是否正确指定了使用CUDA设备。例如,是否有--device cuda或类似的参数被正确设置。 第七步是查看日志和错误信息。用户应该详细阅读报错信息,确定具体是哪个环节导致的CUDA检测失败。根据错误信息,可以更精准地搜索解决方案,或者在GitHub的issue中查找类似问题。 最后,如果以上步骤都尝试过仍无法解决,建议用户联系LLaMA-Factory的开发者社区,提供详细的错误日志和环境信息,寻求进步的帮助。引用[3]提到的安装步骤可能需要再次确认,确保所有步骤都正确执行,没有遗漏。 总结起来,解决这个问题的思路是逐步排查环境配置、依赖安装CUDA设置以及项目配置等方面,确保每步都正确无误。需要用户耐心检查每个环节,可能还需要查阅相关文档或社区讨论来找到解决方案。</think>针对LLaMA-Factory训练时检测CUDA环境的问题,以下是分步解决方案: ### 1. 验证CUDA基础环境 - 执行命令查看显卡状态: ```bash nvidia-smi ``` 若出现"command not found",说明正确安装CUDA驱动或添加到PATH环境变量[^2] - 检查CUDA工具包版本: ```bash nvcc --version ``` 若显示版本号低于PyTorch要求的版本(如PyTorch 2.0+需要CUDA 11.8+),需升级CUDA工具包 ### 2. 检查PyTorch与CUDA兼容性 ```python import torch print(torch.__version__) # 应显示1.13.0+cu117等含"cu"标识的版本 print(torch.cuda.is_available()) # 必须返回True ``` 若输出False,需重新安装GPU版PyTorch: ```bash pip uninstall torch pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 ``` ### 3. 显式指定CUDA设备(关键步骤) 在启动命令前添加环境变量声明: ```bash CUDA_VISIBLE_DEVICES=0 python src/train_bash.py ... ``` 或使用多GPU(引用[2]中的方法): ```bash CUDA_VISIBLE_DEVICES=5,6,7 llamafactory-cli webui ``` ### 4. 检查项目依赖 进入LLaMA-Factory目录执行: ```bash pip install -r requirements.txt ``` 特别注意安装日志中是否出现`nvidia-cublas-cu11`等CUDA相关依赖的安装错误 ### 5. 验证环境变量配置 在~/.bashrc或~/.zshrc中添加: ```bash export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH ``` 执行`source ~/.bashrc`后再次尝试 ### 6. 检查Docker环境(如适用) 若使用容器化部署,需确保: ```bash docker run --gpus all -it ... ``` 并在容器内安装对应版本的CUDA工具包 ### 7. 调试示例代码 创建test_cuda.py验证环境: ```python import torch assert torch.cuda.device_count() > 0, "检测CUDA设备" print(f"可用设备:{torch.cuda.get_device_name(0)}") ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值