2.1.4 对梯度消失和梯度爆炸的近似解决方案

梯度消失与梯度爆炸

如图所示

这里写图片描述

对于一个层数比较深的网络,如100层,如果w的参数设置的比1大,最后迭代训练的结果是 wl w l ,将会是一个非常大的数,反之如果w的参数设置的比1小,经过迭代训练之后结果会变得非常小。这种现象就称之为梯度消失与梯度爆炸,这对于神经网络的深度有很大的挑战。

神经网络的权重初始化

针对这一个问题,我们有一个不完善的解决办法。但他可以帮助我们更谨慎的为神经网络选择随机初始化参数。

我们先来看一下只有一个神经元的情况。

这里写图片描述

如图左侧所示,z是由很多的w组成的,我们希望n越大,w的值越小。其中最合理的方法就是设置为

wi=1n w i = 1 n

其中n表示神经元输出特征数量。

写成代码的形式就是

wi = np.random.randn(shape)*np.sqrt(1/n)

如果你用的ReLu函数的话,那么把1/n改成2/n就可以了。方差设置为2/n效果会更好

我们通过这样的零均值和归一化处理,虽然没能够解决实际问题,但是这个w的范围设置的更合理了。w不会比1大很多,也不会比1小很多,所以梯度爆炸和消失的程度得到了一定的缓解。

右图显式的是其他函数权重的初始化方式,也是在论文中提出来的,目前还在处于探索阶段。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Einstellung

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值