【引言】
在人工智能的星辰大海中,大模型如同璀璨的北极星,引领着科技的未来方向。它们不仅在自然语言处理、计算机视觉、语音识别等领域展现出前所未有的能力,更在医疗健康、金融分析、自动驾驶等行业掀起了一场深刻的变革风暴。然而,构建和理解这些 “神仙级”AI大模型,绝非一日之功,它要求我们既要有坚实的理论基石,又需掌握前沿的技术实践。
本次分享的 《神仙级AI大模型入门教程:从零到一的全面指南》 正是为了满足这一需求而生。无论你是刚刚踏入AI领域的初学者,还是希望深化专业技能的研究者,或是渴望将AI融入业务的行业专家,本书都将是你不可或缺的伙伴。
我们将从最基础的概念出发,逐步深入到复杂的理论体系,再过渡到实际的代码实现和项目实践。每一章节都精心设计,确保你不仅能学到知识,更能获得实际操作的经验。我们将探讨深度学习的奥秘,解析大模型的内部结构,分享训练技巧与调参秘诀,最后,还将引导你如何将这些模型部署到现实世界的应用场景中。
适学人群:
-
AI初学者:
- 对人工智能和机器学习感兴趣,但缺乏相关背景知识的新手。
- 想要了解AI大模型基本原理及应用的非技术人士。
-
编程爱好者:
- 已具备一定编程基础,尤其是Python编程经验,希望通过实践深入AI领域的个人。
-
在校学生:
- 计算机科学、数据科学、统计学、数学等相关专业的本科生或研究生。
- 正在寻找项目灵感或毕业设计主题的学生。
-
行业从业者:
- IT行业的软件工程师、数据分析师、产品经理,希望扩展技能树,了解AI最新趋势。
- 从事传统行业,如医疗、金融、教育、制造等,寻求AI解决方案以提高效率的专业人士。
-
研究者和学者:
- 高校教师、科研机构的研究员,致力于AI领域的学术研究与技术创新。
- 博士后、博士生和硕士生,正在攻读AI相关的高级学位。
-
创业家和企业家:
- 创业者,计划开发基于AI的产品或服务。
- 企业高管,希望利用AI技术推动公司数字化转型和创新。
-
政策制定者和教育工作者:
- 政府部门的决策者,关注AI对社会经济的影响。
- 教育领域的专业人士,负责规划AI教育课程和培训项目。
本书通过由浅入深的内容安排,旨在让不同背景的读者都能找到适合自己的起点,无论是想要快速入门还是追求深入掌握,都能从中获益。无论你处于职业生涯的哪个阶段,只要你对AI大模型充满好奇,这本书就是为你准备的。
第1章 快速上手:人工智能演进与大模型崛起
1.1 从AI到AIOps
1.2 人工智能与通用人工智能
1.3 GPT模型的发展历程
第2章 大语言模型基础
2.1 Transformer 模型
- 嵌入表示层
- 注意力层
- 前馈层
- 残差连接与层归一化
- 编码器和解码器结构
2.2 生成式预训练语言模型 GPT
- 无监督预训练
- 有监督下游任务微调
- 基于 HuggingFace 的预训练语言模型实践
2.3 大语言模型结构
- LLaMA 的模型结构
- 注意力机制优化
第3章 大语言模型基础
3.1 数据来源
- 通用数据
- 专业数据
3.2 数据处理
- 低质过滤
- 冗余去除
- 隐私消除
- 词元切分
3.3 数据影响分析
- 数据规模影响
- 数据质量影响
- 数据多样性影响
3.4 开源数据集合
- Pile
- ROOTS
- RefinedWeb
- SlimPajama
第4章 分布式训练
4.1 分布式训练概述
4.2 分布式训练并行策略
- 数据并行
- 模型并行
- 混合并行
- 计算设备内存优化
4.3 分布式训练的集群架构
- 高性能计算集群硬件组成
- 参数服务器架构
- 去中心化架构
4.4 DeepSpeed 实践
- 基础概念
- LLaMA 分布式训练实践
第5章 有监督微调
5.1 提示学习和语境学习
- 提示学习
- 语境学习
5.2 高效模型微调
- LoRA
- LoRA 的变体
5.3 模型上下文窗口扩展
- 具有外推能力的位置编码
- 插值法
5.4 指令数据构建
- 手动构建指令
- 自动生成指令
- 开源指令数据集
5.5 Deepspeed-Chat SFT 实践
- 代码结构
- 数据预处理
- 自定义模型
- 模型训练
- 模型推
第6章 强化学习
6.1 基于人类反馈的强化学习
6.2 奖励模型
6.3 近端策略优化
6.4 MOSS-RLHF 实践
第7章 大语言模型应用
7.1 推理规划
7.2 综合应用框架
7.3 智能代理
7.4 多模态大模型
7.5 大语言模型推理优化
第8章 大语言模型评估
8.1 模型评估概述
8.2 大语言模型评估体系
8.3 大语言模型评估方法
8.4 大语言模型评估实践
大模型现在这么火热,各行各业都在开发搭建属于自己企业的私有化大模型,那么势必会需要大量大模型人才,同时也会带来大批量的岗位?“雷军曾说过:站在风口,猪都能飞起来”可以说现在大模型就是当下风口,是一个可以改变自身的机会,就看我们能不能抓住了。
那么,我们该如何学习大模型?
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
一、大模型全套的学习路线
学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。
L1级别:AI大模型时代的华丽登场
L2级别:AI大模型API应用开发工程
L3级别:大模型应用架构进阶实践
L4级别:大模型微调与私有化部署
一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。
以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。