一、引言:当AI遇上流程图
你是否曾为绘制复杂的业务流程图而头疼?传统工具如Visio、Lucidchart虽然强大,但手动调整节点和连线的效率极低。现在,AI技术正在颠覆这一现状!本文将带你体验如何用DeepSeek(国产顶尖AI模型)结合Mermaid(轻量级图表语言),实现流程图的自然语言生成→代码转换→动态渲染全流程自动化,让你的工作效率飙升300%!
二、核心工具揭秘
1. DeepSeek:国产AI的「代码生成引擎」
- 技术背景:DeepSeek V3是杭州深度求索公司开源的MoE模型,拥有6710亿参数,在代码生成领域表现超越Claude 3.5,仅次于GPT-4。其API支持输入自然语言描述,直接输出Mermaid代码。
- 应用场景:开发者可通过API调用,将业务逻辑的文字描述(如「用户注册流程」)转化为结构化的Mermaid代码,节省80%的绘图时间。
2. Mermaid:用代码写图表的「魔法语言」
- 语法特点:Mermaid采用类Markdown语法,用简单文本定义流程图、时序图等。例如:
graph TD
A[开始] --> B[用户登录]
B -->|成功| C[进入主页]
B -->|失败| D[提示错误]
- 可视化工具:可通过Mermaid Live Editor、VS Code插件或Diagramix(AI驱动的Mermaid平台)实现实时渲染。
三、实操演示:从需求到图表只需3步
1. 自然语言输入
场景:某电商平台的「订单处理流程」需要绘制流程图。
- 用户输入:
请生成一个订单处理流程的流程图,包括用户下单、支付、库存检查、发货、退货五个环节,其中支付失败需返回重新支付,库存不足需通知客服。
2. DeepSeek生成Mermaid代码
通过API调用DeepSeek,输入上述提示,返回以下代码:
graph TD
A[用户下单] --> B[支付]
B -->|成功| C[库存检查]
B -->|失败| D[重新支付]
C -->|充足| E[发货]
C -->|不足| F[通知客服]
E --> G[完成]
F --> G
G --> H[退货]
H -->|是| I[退款]
H -->|否| J[结束]
3. 可视化渲染
将生成的Mermaid代码粘贴到Diagramix或Mermaid Live Editor,立即生成动态流程图:
四、技术优势解析
1. 效率革命
- 传统流程:需求沟通→手动绘图→反复修改(平均耗时2小时)。
- AI流程:自然语言输入→代码生成→自动渲染(5分钟内完成)。
- 数据支撑:某互联网公司测试显示,使用DeepSeek+Mermaid后,流程图制作效率提升4倍,错误率下降60%。
2. 灵活性与扩展性
- 动态调整:只需修改Mermaid代码中的节点或连线,即可快速更新流程图。
- 多端适配:生成的Mermaid代码可直接嵌入Markdown文档、Notion页面或Confluence知识库。
五、行业应用案例
1. 教育领域:课程设计流程图
- 场景:高校教师设计「在线课程开发流程」。
- AI生成代码:
graph TD
A[需求分析] --> B[课程大纲]
B --> C[内容制作]
C --> D[视频录制]
C --> E[PPT设计]
D --> F[剪辑]
E --> F
F --> G[测试]
2. 制造业:生产质检流程
- 场景:汽车零部件厂商的「智能质检系统」流程图。
- 效果:缺陷检出率从92%提升至99.7%,每年节省成本3000万元。
六、常见问题解答
- Q:DeepSeek生成的Mermaid代码准确率如何? A:在技术流程场景中,准确率可达90%以上;复杂业务逻辑需人工微调。
- Q:是否支持中文输入? A:完全支持,DeepSeek在中文处理上表现优异,尤其适合国内企业需求。
- Q:如何处理敏感数据? A:可通过本地部署DeepSeek模型,确保数据隐私。
七、总结:AI时代的流程图革命
DeepSeek与Mermaid的结合,标志着流程图绘制从「手工劳动」迈入「智能生成」时代。无论是技术文档、项目管理还是业务流程设计,这对黄金搭档都能帮你快速实现逻辑可视化。立即尝试,体验AI带来的效率跃迁!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。