如何开发一个企业级的 LLMOps(智能体) 平台?

1、概念解析: LLMOPS、MLOPS、智能体平台

LLMOPS 和智能体平台的定义:

  • 智能体平台: 大语言模型(LLM) 应用开发平台,开发者可以快速搭建生产级的生成式 AI 应用;
  • LLMOPS : LLMOps(Large Language Model Operations)是一个涵盖了大型语言模型(如GPT系列)开发、部署、维护和优化的一整套实践和流程。类似于 MLOPS,但专门针对 LLM。LLMOPS 专注于 LLM 的整个声明周期操作和管理,包括:数据管理、模型微调、模型部署、模型评估、模型监控、模型维护等;

img

  • MLOPS: 机器学习运维(MLOps)是一组工作流实践,旨在简化机器学习(ML)模型的部署和维护过程。它在软件工程的DevOps实践基础上,专注于机器学习模型的整个生命周期管理。

Coze、FastGPT、Dify 平台的定位:

  • Coze:

img

  • Dify:

img

  • FastGPT:

img

智能体平台、LLMOPS、MLOPS 关系:

在各类跟 AI 相关的技术平台中,你一定经常会听到智能体平台、LLMOPS、MLOPS,你是否知道这 3 个概念之间的区别和联系呢?

下图是 3 个概念之间的区别和联系:

img

MLOPS 是机器学习运维,用来训练通用的模型。LLMOPS 属于 MLOPS 中的一部分,主要用来解决 LLM 的生命周期管理。通过 LLMOPS,企业可以很容易的训练出 需要的LLM,提供给智能体平台集成。

智能体平台可以集成 LLM 作为其核心组件(例如,用 LLM 驱动智能代理的决策逻辑),而 LLMOps 则为这种集成提供模型运维支持(如部署、监控和优化 LLM)。

2、智能体应用开发的 4 个层级

在各类跟智能体相关的技术文章或课程中,也经常会介绍如何开发一个智能体。那么智能体开发有哪些方式,这些方式的优缺点又是什么?根据技术栈深度、定制化能力,我将智能体开发分为 4 个等级:L1、L2、L3、L4。等级越高需要的技术能力越高、可定制化程度也越高,也越能满足企业的真实智能化需求。

img

L1:直接基于 Dify、Coze 等智能体平台,通过前端页面,创建一个智能体应用。

  • 优点:简单、便捷。
  • 缺点:可控性最差。

L2:直接调用 LLM 提供的 API (SDK)开发智能体应用;

  • 优点:相较于 L1,具备一定的定制能力;
  • 缺点:有一定工作量,实现的智能体应用能力有限;

L3:基于自研的智能体平台创建智能体应用。

  • 优点:可控性强,功能相对完善;
  • 缺点:开发工作量大、缺乏数据处理、模型微调等能力。

L4:最高接的智能体应用开发方式。

  • 优点:完全可控、可以实现功能非常强大的智能体应用;
  • 缺点:开发工作量相较于 L1、L2、L3 都大。

上面介绍了智能体应用开发的 4 个层级,LLMOPS 平台,也就是 EasyAI 项目,处在 L4 层级,功能完全可定制,能够满足企业业务的定制化场景需求。

3、行业内有哪些优秀的智能体平台?

在开发 EasyAI 项目的过程中,也调研了很多国内外优秀的智能体平台。这里也简单介绍下。调研的智能体平台分为:

  • 国外智能体平台调研;
  • 国内智能体平台调研。

3.1、国外智能体平台调研

国外智能体平台比较多,比较受欢迎的有:Vertex AI 、n8n、Crew AI、Flowise、Lindy、Camel、FastGPT。

Vertex AI 是谷歌云的 MLOPS 平台,功能比较丰富。其他,n8n、Camel、FastGPT 也功能相对丰富些。其他智能体平台都比较偏 Workflow。

结论:智能体平台功能调研,感觉完全可以参考国内的。功能上来说,智能体平台都很重视 Workflow 能力,可以说 Workflow 能力是智能体平台排名第二的核心能力。

3.2、国内智能体平台调研

国内的智能体平台也不少,当时调研了 Dify、Coze、BetterYeah、阿里百炼、腾讯元器、文心智能体平台等。发现智能体平台做的好的是 Dify、Coze、阿里百炼、BetterYeah。Dify、Coze、BetterYeah 相较于完整的 LLMOPS 平台功能来说,少了模型微调、模型部署部分的能力。阿里百炼是支持模型微调的,属于功能较为完备的 LLMOPS 平台。

4、LLMOPS 平台功能有哪些?

经过上面的智能体平台调研,我将 LLMOPS 平台的功能汇总在以下一张图中:

img

EasyAI 项目实现了 LLMOPS 平台的所有功能。至少目前,架构设计上已经给上述各功能留下了扩展接口。

5、智能体平台语言选择

在开发智能体平台时,首先需要选择一个编程语言。智能体平台属于承载了 AI 能力的应用层项目。所以,从语言选择上,可以选择适合应用层软件开发的语言,例如:Go、Python、Java。具体选择何种语言,可以根据团队的实际语言技术栈进行选择:

  • Python:生态强大,但 Python 语言相较于 Go 语言,Go 语言更适合应用层项目的开发;
  • Go:生态偏弱,但 Go 语言级特性,但很适合开发 LLMOPS 平台;

编程语言如何选择?我个人感觉可以根据团队技术栈来选择:

  • 如果团队的主流开发语言是 Go,可以选择 Go;
  • 如果团队的主流开发语言时 Python,可以选择 Python。

相比于生态,一个团队引入一个新的开发语言,维护成本会更高,原因如下:

  • LLMOPS 平台属于一个中大型项目,需要投入很多开发人力,如果团队主流语言是 A,又要在 B 语言上投入不小的开发人力,会导致团队需要同时维护 A、B 2 门语言;
  • LLMOPS 中用到的生态,主要是 SDK,这部分 SDK 在一定程度上可以起到提效作用,但其实开发成本并不高。Go 中当前也有 langchan-go、eino 这类框架可用;

就我个人而言:我会选择 Go,因为我想尽量保持团队的主流开发语言是 Go,降低整个团队的成本。

6、开发 LLMOPS 平台的一些核心关注点

根据我的开发经验,在开发 LLMOPS 时,一开始应该关注一些核心的技术实现:

  • 生态: 需要关注相关的生态,例如 Python 的 langchain、langgraph、mcp;Go 的 langchango、eino 等。

  • 方案的彻底性: 产品功能逐步迭代,但是方案要做彻底,要有前瞻性,不要仅盯着需求去做。

  • 项目代码质量: 代码质量不高,后面会严重降低产品迭代速度。修复 Bug、改造已有逻辑、重构、重复件实现代码等;

  • 工作流实现: 数据处理工作流、任务处理工作流、智能体工作流等

  • 扩展性: 能够灵活的扩展工作流、插件、工作流节点、LLM、知识库文档来源、数据集数据来源、数据处理算子等;

  • 异步任务: LLMOPS 平台开发过程中会涉及到很多异步任务处理,所以需要设计一个通用、可扩展的异步任务处理框架;

  • 资源限流: LLM 属于有限资源,Token 限制、请求量限制、超时处理等。需要有一个通用、可扩展的资源限流机制。

上述关注点,如果一开始没有考虑好,项目后期会很难快速迭代。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值