在人工智能的迅猛发展进程中,AI 大语言模型(Large Language Model,LLM)宛如一颗璀璨夺目的新星,吸引着无数人的目光。从惊艳世人的 ChatGPT,到功能强大的 GPT-4,再到众多不断涌现的新兴模型,LLM 正以其强大的语言理解与生成能力,深刻地变革着我们与机器交互的方式,广泛地渗透进生活与工作的各个领域。对于渴望踏入这片充满魅力与挑战领域的初学者而言,一份全面且易于理解的入门指南无疑是开启探索之旅的关键钥匙。接下来,就让我们一同揭开 AI 大语言模型的神秘面纱。
一、大语言模型是什么
大语言模型,简单来说,是一种基于深度学习技术构建的人工智能模型,它通过在海量文本数据上进行训练,从而学会理解和生成人类语言。这些模型拥有极其庞大的参数规模,能够捕捉到语言中复杂的语法、语义和语用信息。打个比方,如果把语言比作一座巨大的迷宫,大语言模型就像是经过无数次探索,记住了迷宫中几乎所有路径和线索的探险家,能够在面对各种语言任务时,迅速找到合适的解决方案。
例如,当你向一个训练有素的大语言模型输入 “请描述一下美丽的春天”,它能够根据从海量文本中学到的关于春天的各种特征、景象、感受等信息,生成一段生动且富有逻辑的描述,如 “春天,宛如一位温柔的使者,轻盈地降临人间。大地从沉睡中苏醒,嫩绿的小草迫不及待地从土里探出脑袋,好奇地张望着这个崭新的世界。五颜六色的花朵竞相绽放,红的像火,粉的像霞,白的像雪,它们交织在一起,构成了一幅绚丽多彩的画卷。微风轻拂,带来阵阵清新的花香,仿佛是春天在向人们诉说着它的美好。鸟儿在枝头欢快地歌唱,似乎也在为这生机勃勃的季节欢呼雀跃。”
与早期的语言模型相比,大语言模型的优势主要体现在以下几个方面:
-
强大的泛化能力:早期语言模型往往只能处理特定领域或特定类型的语言任务,而大语言模型凭借其对海量多样文本的学习,能够在多种不同领域、不同类型的任务中表现出色,具有更强的通用性和适应性。
-
出色的上下文理解能力:大语言模型能够更好地理解文本的上下文信息,在对话或长文本处理中,它可以根据前文内容准确把握语义,生成连贯、合理的回复或总结,而不是孤立地处理每个句子。
-
少样本甚至零样本学习能力:一些先进的大语言模型在面对新任务时,只需要少量的示例甚至不需要示例,就能通过对语言模式和知识的理解尝试完成任务,这大大拓展了模型的应用范围和灵活性。
二、大语言模型的发展历程
大语言模型的发展并非一蹴而就,而是经历了一个漫长且不断演进的过程。
早期的自然语言处理(NLP)技术主要基于规则和统计方法。基于规则的方法依赖于人工编写大量的语法和语义规则,让计算机按照这些规则来处理语言。例如,对于简单的句子 “我喜欢苹果”,可以通过预先设定的规则分析出 “我” 是主语,“喜欢” 是谓语,“苹果” 是宾语。然而,这种方法在面对复杂多变的自然语言时,显得力不从心,因为语言中的规则异常繁杂,难以穷举。
统计方法的出现为 NLP 带来了新的思路。它基于大量的文本数据,通过统计词与词之间的共现频率等信息来构建语言模型。比如,通过统计大量文本发现,“天空” 后面出现 “蓝色” 的概率较高,从而在处理相关文本时可以做出相应的预测。像 N - gram 模型就是这类统计语言模型的代表,它根据前 N - 1 个词来预测下一个词的出现概率。但统计方法也存在局限性,它往往只能捕捉到局部的语言模式,对于长距离依赖和复杂语义关系的处理能力较弱。
随着深度学习的兴起,神经语言模型应运而生。神经网络强大的学习能力使得模型能够自动从大量文本中学习语言的特征和模式,无需人工手动编写复杂的规则。其中,循环神经网络(RNN)及其变体长短时记忆网络(LSTM)和门控循环单元(GRU)在一段时间内成为 NLP 领域的重要模型结构。RNN 能够处理序列数据,通过隐藏状态来传递上下文信息,但在处理长序列时会面临梯度消失或梯度爆炸的问题。LSTM 和 GRU 则通过引入门控机制,一定程度上解决了长序列依赖问题。
真正具有里程碑意义的是 Transformer 架构的提出。2017 年,Vaswani 等人在论文《Attention Is All You Need》中提出了 Transformer 架构,它摒弃了传统的循环和卷积结构,引入了自注意力(Self - Attention)机制。自注意力机制使得模型能够同时关注输入序列中的不同位置,更好地捕捉长距离依赖关系,并且可以并行计算,大大提高了训练效率。基于 Transformer 架构,诞生了一系列具有深远影响的大语言模型。
2018 年,谷歌发布了 BERT(Bidirectional Encoder Representations from Transformers)模型。BERT 采用双向 Transformer 编码器,在大规模语料上进行预训练,然后针对不同的下游任务进行微调,如文本分类、问答系统等。它在多个 NLP 任务上取得了显著的性能提升,开创了预训练 - 微调的 NLP 模型开发范式。
同年,OpenAI 推出了 GPT(Generative Pre - trained Transformer)模型。与 BERT 不同,GPT 采用单向 Transformer 解码器,主要用于生成任务。GPT - 1、GPT - 2 在语言生成方面展现出了一定的能力,但参数规模相对有限。2020 年,具有 1750 亿参数的 GPT - 3 横空出世,其强大的零样本和少样本学习能力震惊了整个 AI 领域。GPT - 3 能够根据简单的提示生成高质量的文本,涵盖文章写作、代码编写、问题回答等多个领域,引发了全球对大语言模型的广泛关注和研究热潮。此后,OpenAI 又不断升级迭代,推出了 GPT - 4 等更强大的版本,其能力进一步提升,在多模态融合等方面也取得了进展。
与此同时,其他机构和公司也纷纷加入大语言模型的研发竞赛。例如,谷歌的 Switch Transformer 模型参数规模高达 1.6 万亿;北京智源人工智能研究院发布的 “悟道 2.0” 模型参数达到 1.75 万亿,一度成为全球最大的预训练模型。国内的百度、阿里、华为等科技巨头也在大语言模型领域积极布局,推出了文心大模型、通义千问、盘古大模型等,并且在不同领域和场景中进行应用探索。
三、大语言模型的核心技术
(一)Transformer 架构
Transformer 架构是大语言模型的核心基础,其设计理念对模型的性能和能力起到了决定性作用。Transformer 架构主要由编码器(Encoder)和解码器(Decoder)组成,在大语言模型中,通常只使用编码器部分(如 BERT)或解码器部分(如 GPT),也有同时使用两者的情况。
编码器由多个相同的层堆叠而成,每一层包含两个子层:多头自注意力(Multi - Head Self - Attention)子层和前馈神经网络(Feed - Forward Neural Network)子层。多头自注意力机制通过多个不同的注意力头并行计算,能够从不同的角度捕捉输入序列中各个位置之间的关系,从而更全面地获取上下文信息。例如,对于句子 “我去商店买苹果”,不同的注意力头可能分别关注 “我” 与 “去” 的动作关系、“商店” 与 “买” 的地点与行为关系以及 “苹果” 与 “买” 的对象与行为关系等。前馈神经网络则对自注意力子层的输出进行进一步的非线性变换,增强模型的表达能力。
解码器与编码器结构类似,但在自注意力子层部分有所不同。解码器的自注意力子层只能关注到当前位置之前的信息,这是为了确保在生成文本时,模型只能根据已经生成的部分来预测下一个词,符合语言生成的顺序性。在生成任务中,解码器逐步生成输出序列,每一步都基于上一步的输出和编码器的输出进行计算。
(二)预训练 - 微调范式
预训练 - 微调范式是大语言模型训练的常用策略。预训练阶段,模型在大规模的通用文本数据上进行无监督学习,学习语言的通用模式、语法规则、语义知识等。这个过程就像是让一个学生阅读大量的书籍,积累丰富的知识,但并不针对具体的考试科目进行专门复习。预训练通常采用自监督学习的方式,比如掩码语言模型(Masked Language Modeling)任务,在输入文本中随机遮盖一些单词,让模型根据上下文预测被遮盖的单词;或者因果语言模型(Causal Language Modeling)任务,让模型根据前文预测下一个单词。通过在海量数据上进行预训练,模型能够学习到广泛而深入的语言知识,具备了强大的语言理解和生成基础能力。
微调阶段则是在预训练模型的基础上,针对特定的下游任务,如文本分类、情感分析、机器翻译等,使用相对较少的特定任务数据对模型进行进一步训练。这就好比学生在积累了大量知识后,针对某一门具体的考试科目,通过做一些相关的练习题来调整自己的知识应用方式,以更好地应对该科目的考试。在微调过程中,通常只需要调整模型的最后几层或者部分参数,使得模型能够快速适应特定任务的需求,同时又避免了在少量数据上过度训练导致的过拟合问题。
(三)注意力机制的变体
除了基本的自注意力机制,为了进一步提升模型性能和适应不同的应用场景,研究人员还提出了许多注意力机制的变体。
位置注意力机制(Positional Attention)考虑了输入序列中单词的位置信息。因为在自然语言中,单词的顺序对于语义理解至关重要,简单的自注意力机制并没有显式地利用位置信息。位置注意力机制通过给每个单词添加位置编码,使得模型在计算注意力时能够同时考虑单词的内容和位置,从而更好地捕捉语言中的顺序关系。
局部注意力机制(Local Attention)则是为了减少计算量和内存消耗。在处理超长序列时,标准的自注意力机制计算量会随着序列长度的增加而急剧上升。局部注意力机制只让每个位置关注其周围的局部区域,而不是整个序列,这样可以在一定程度上降低计算复杂度,同时保持对局部上下文的有效捕捉。
还有全局注意力机制(Global Attention),它在处理一些需要关注全局信息的任务时非常有用。与局部注意力相反,全局注意力机制允许模型在特定情况下能够全局地关注输入序列的所有位置,以便获取更全面的信息来做出决策。例如,在文本摘要任务中,模型可能需要全局地考虑文章的各个部分,才能准确提取关键信息并生成合适的摘要。
四、大语言模型的应用场景
大语言模型的强大能力使其在众多领域都有着广泛而深入的应用,切实地改变着人们的生活和工作方式。
(一)自然语言处理任务
-
文本生成:大语言模型可以根据给定的主题、提示或上下文生成连贯、富有逻辑的文本。如新闻写作,模型能够根据新闻事件的关键信息,快速生成一篇结构完整、内容丰富的新闻报道;在小说创作方面,作者可以借助模型生成故事大纲、人物设定甚至具体的情节段落,为创作提供灵感和辅助。例如,一些在线写作平台已经开始集成大语言模型,帮助用户快速生成营销文案、广告标语等,大大提高了创作效率。
-
问答系统:无论是智能客服回答用户的常见问题,还是学术领域的知识问答,大语言模型都能发挥重要作用。在智能客服场景中,模型能够快速理解用户的问题意图,并从大量的知识库中提取准确的答案,为用户提供及时的服务。在教育领域,学生可以通过问答系统向模型提问,获取学科知识的解释、解题思路等,如同拥有一位随时在线的专属辅导老师。例如,一些大型企业的客服热线背后,就利用大语言模型实现了自动化的问题解答,大大减轻了人工客服的压力,提高了服务效率和质量。
-
文本翻译:大语言模型在多语言翻译任务中表现出色。它能够理解源语言文本的语义,并将其准确地翻译成目标语言。与传统的机器翻译方法相比,大语言模型生成的译文更加自然流畅,语法和语义错误更少。例如,在跨国商务交流中,大语言模型可以帮助企业快速准确地翻译合同、邮件等重要文件;在国际旅游中,旅行者可以借助翻译应用中的大语言模型实时翻译对话,打破语言障碍。目前,一些在线翻译工具已经采用大语言模型技术,为用户提供更优质的翻译体验。
-
文本摘要:面对大量的文本信息,如学术论文、新闻文章、会议记录等,大语言模型可以自动提取关键信息,生成简洁明了的摘要。这对于研究人员快速了解相关领域的研究成果、企业管理者快速掌握市场动态等都具有重要意义。例如,在金融领域,分析师可以利用模型生成的公司财报摘要,快速分析企业的财务状况和经营成果;在信息检索领域,搜索引擎可以结合文本摘要技术,为用户提供更精炼的搜索结果预览,帮助用户更快地找到所需信息。
(二)智能助手与聊天机器人
智能语音助手如苹果的 Siri、亚马逊的 Alexa、谷歌助手以及众多企业开发的客服聊天机器人,都在逐渐引入大语言模型技术。这些智能助手能够理解用户的自然语言指令,完成各种任务,如查询天气、设置提醒、播放音乐、查询产品信息、解决技术问题等。大语言模型使得智能助手和聊天机器人具备更强的上下文理解能力和对话管理能力,能够与用户进行更加自然、流畅、智能的交互。例如,用户可以与智能助手进行多轮对话,讨论复杂的问题,助手能够根据之前的对话内容准确理解用户意图,并提供合适的回答和解决方案。在电商领域,客服聊天机器人借助大语言模型能够更好地理解客户需求,推荐合适的商品,处理订单问题,提升客户购物体验。
(三)创意与艺术领域
-
创意写作:大语言模型可以成为创意写作的得力助手。它可以根据给定的主题、风格或情感基调,生成诗歌、故事、剧本等各种文学作品。虽然目前模型生成的作品在创造性和情感深度上可能还无法完全与人类作家相媲美,但它能够为创作者提供灵感启发、创作思路和初稿框架。例如,一位诗人在创作新作品时,可以先让模型根据特定的意象或情感生成一些诗句,然后在此基础上进行修改和完善;一个编剧可以利用模型生成故事梗概和角色对话,为剧本创作节省时间和精力。一些在线写作社区和平台已经推出了基于大语言模型的创意写作辅助功能,受到了广大创作者的关注和使用。
-
音乐创作:在音乐领域,大语言模型也开始崭露头角。通过将音乐元素转化为文本形式进行处理,模型可以生成音乐旋律、和声、节奏等。例如,用户可以通过输入对音乐风格、情感、主题等方面的描述,让模型生成相应的音乐片段。虽然目前音乐生成技术还处于发展阶段,但大语言模型为音乐创作带来了新的可能性,为音乐创作者提供了更多的创作工具和思路。一些音乐软件已经开始尝试集成音乐生成功能,让普通用户也能够体验音乐创作的乐趣。
-
图像生成(结合多模态技术):随着多模态技术的发展,大语言模型与计算机视觉技术相结合,实现了根据文本描述生成图像的功能。例如,用户输入 “一只在蓝色天空中飞翔的红色小鸟”,模型能够生成相应的图像。这种技术在广告设计、游戏开发、动漫创作等领域具有广泛的应用前景。广告设计师可以利用该技术快速生成产品宣传图片的初稿;游戏开发者可以通过文本描述快速生成游戏场景和角色的概念图,提高开发效率;动漫创作者可以借助模型生成角色设定和分镜草图,为创作提供灵感和参考。目前,已经有许多图像生成工具和平台基于这种多模态大语言模型技术,为用户提供便捷的图像创作服务。
(四)科学研究与数据分析
-
科研文献分析:在科学研究领域,大语言模型可以帮助研究人员快速处理和分析海量的科研文献。它能够自动提取文献中的关键信息,如研究目的、实验方法、研究结论等,进行文献综述和知识图谱构建。这有助于研究人员快速了解相关领域的研究现状和发展趋势,发现潜在的研究方向和合作机会。例如,在医学研究中,研究人员可以利用模型分析大量的医学文献,寻找疾病的潜在治疗方法和药物研发线索;在材料科学领域,模型可以帮助分析材料的性能和应用研究文献,为新材料的开发提供参考。
-
数据分析与洞察:对于企业和研究机构中的大量文本数据,如客户反馈、市场调研报告、社交媒体数据等,大语言模型可以进行深入分析,挖掘其中的有价值信息。它能够进行情感分析,了解客户对产品或服务的满意度和意见;进行主题建模,发现数据中的主要话题和趋势;进行实体识别,提取关键人物、事件和概念等。例如,企业可以通过分析客户在社交媒体上的评论,了解产品的优缺点,及时改进产品和服务;市场研究机构可以利用模型对大量的市场调研数据进行分析,为企业提供市场趋势预测和竞争态势分析报告。
五、初学者如何学习大语言模型
(一)掌握基础知识
数学基础
线性代数中的矩阵运算、向量空间等知识对于理解神经网络和模型的参数表示至关重要。矩阵在模型中用于存储和计算大量的参数和数据,向量空间则为语言的数学表示提供了基础。例如,在大语言模型中,单词通常会被映射为高维向量,通过向量之间的运算来表示语义关系 。概率论与数理统计中的概率分布、贝叶斯定理、统计推断等内容有助于理解模型的训练和不确定性。模型在训练过程中,需要通过概率计算来评估不同参数的可能性,从而找到最优解。最优化方法中的梯度下降及其变体是训练大语言模型的核心算法,它通过不断调整模型参数,使损失函数最小化,以达到更好的模型性能。
编程基础
Python 是学习大语言模型的主要编程语言,其简洁的语法和丰富的库为模型开发提供了便利。需要熟练掌握 Python 的基础语法,包括数据类型、控制流、函数定义与调用等;同时,要精通常用的数据结构,如列表、字典、集合等,以便高效地处理数据。此外,还需掌握重要的 Python 库,如 NumPy 用于数值计算,它提供了高性能的多维数组对象和各种数学函数;Pandas 用于数据处理和分析,能够方便地读取、清洗和处理数据;Matplotlib 和 Seaborn 用于数据可视化,帮助直观地理解数据特征和模型结果。
深度学习基础
深入理解神经网络的基本结构,包括神经元、激活函数、前向传播和反向传播等。神经元是神经网络的基本单元,激活函数赋予了神经网络非线性表达能力,前向传播用于计算输出,反向传播则通过梯度计算来更新模型参数。熟悉常见的神经网络架构,如多层感知机(MLP)、卷积神经网络(CNN)和循环神经网络(RNN)及其变体 LSTM、GRU 等。虽然大语言模型主要基于 Transformer 架构,但了解这些传统架构有助于理解神经网络的发展脉络和基本原理。同时,要掌握深度学习的训练流程,包括数据预处理、模型训练、评估和调优,这是构建和优化大语言模型的关键步骤。
(二)深入学习大语言模型相关知识
核心技术原理
深入钻研 Transformer 架构的细节,包括多头自注意力机制、位置编码、编码器和解码器的工作原理。理解多头自注意力机制如何从不同角度捕捉输入序列的关系,位置编码如何将单词的位置信息融入模型,以及编码器和解码器在不同任务中的具体作用。深入学习预训练 - 微调范式,了解预训练阶段常用的自监督学习任务,如掩码语言模型、因果语言模型的具体实现和训练目标;掌握微调阶段针对不同下游任务的参数调整策略和方法,以及如何平衡预训练知识和特定任务知识。此外,还需探索各种注意力机制的变体及其应用场景,了解它们如何在不同任务中提升模型性能。
模型架构与发展
研究主流大语言模型的架构设计和创新点,如 BERT 的双向编码器、GPT 的单向解码器,分析它们在不同任务中的优势和局限性。关注大语言模型的发展动态,跟踪新模型的发布和技术创新,了解模型参数规模、训练数据、性能表现等方面的变化趋势,学习新模型中引入的新技术和方法,如多模态融合、强化学习等。
(三)实践与项目经验积累
开源项目实践
参与开源的大语言模型项目,如 Hugging Face 的 Transformers 库,它提供了大量预训练模型和工具,方便用户进行模型调用、微调等操作。通过阅读项目代码,理解模型的实现细节和训练流程;尝试对模型进行微调,应用于具体的任务,如文本分类、问答系统等,在实践中加深对模型的理解和应用能力。
自主项目开发
根据自身兴趣和能力,确定一个大语言模型相关的项目方向,如基于大语言模型开发一个智能客服系统、一个创意写作助手等。从需求分析、数据收集与处理、模型选择与训练、系统开发与部署等方面全流程参与项目,锻炼解决实际问题的能力。在项目过程中,不断尝试优化模型性能,调整模型参数,探索新的技术应用,积累项目经验。
学习资源推荐
(一)书籍
《深度学习》(花书) 全面系统地介绍了深度学习的基础知识、算法和应用,是深度学习领域的经典教材,适合初学者建立扎实的理论基础。《自然语言处理入门》详细讲解了自然语言处理的基本概念、方法和技术,涵盖了从传统方法到深度学习方法的内容,对学习大语言模型在自然语言处理中的应用有很大帮助。《Attention Is All You Need》原文论文深入阐述了 Transformer 架构的设计思想和原理,是理解大语言模型核心架构的重要文献。
(二)在线课程
Coursera 上的 “深度学习专项课程” 由深度学习领域的知名学者吴恩达授课,系统讲解深度学习的基础知识和应用,包括神经网络、卷积神经网络、循环神经网络等内容,适合初学者入门深度学习。edX 上的 “自然语言处理专项课程” 涵盖了自然语言处理的各个方面,从基础的语言模型到先进的深度学习方法,对学习大语言模型在自然语言处理中的应用有很好的指导作用。Hugging Face 官方提供的 Transformers 库相关课程,详细介绍了库的使用方法和模型微调技术,有助于快速上手大语言模型的实践应用。
(三)社区与论坛
Stack Overflow 是全球最大的程序员问答社区,在这里可以搜索和提问大语言模型相关的技术问题,获取其他开发者的经验和解决方案。Reddit 的机器学习、自然语言处理板块聚集了众多机器学习和自然语言处理领域的爱好者和专家,在这里可以了解到最新的技术动态、研究成果和讨论热点。Hugging Face 的官方论坛是大语言模型开发者的交流平台,在这里可以分享经验、讨论技术问题、获取官方支持和资源。
学习大语言模型是一个长期且充满挑战的过程,需要不断学习、实践和探索。通过扎实掌握基础知识,深入学习核心技术,积极参与实践项目,并充分利用各种学习资源,初学者能够逐步掌握大语言模型技术,为在这一领域的进一步发展奠定坚实的基础。
以上文章为初学者提供了学习大语言模型的系统方案。你对内容的深度、篇幅是否满意,或者还有其他特定需求,都能随时告诉我。练和不确定性;最优化方法中的梯度
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。