在科技飞速发展的 2025 年,大模型技术正以前所未有的速度改变着我们的生活和工作方式。从智能语音助手到精准的医疗诊断,从高效的物流调度到个性化的推荐系统,大模型的应用无处不在。这一技术浪潮,也为广大程序员带来了新的职业发展机遇。许多程序员开始思考:转行做大模型,会是一个好的选择吗?如果决定转行,又有哪些岗位可以选择,该如何做出合适的选择呢?接下来,我们就一起来探讨一下这些问题。
一、转行大模型的前景如何?
(一)市场需求旺盛
如今,几乎每个行业都在积极探索如何利用大模型技术提升自身的竞争力。金融行业借助大模型进行风险评估和智能投顾,医疗行业依靠大模型辅助疾病诊断和药物研发,教育行业通过大模型实现个性化学习和智能辅导…… 这意味着,市场对懂得创建、维护和优化大模型系统的专业人员需求极为迫切。无论你是渴望进入大型科技公司,还是计划自主创业,都有广阔的市场空间等待你去开拓。
(二)技术持续革新
投身于大模型领域,意味着你将始终站在技术的最前沿,不断接触到最新的研究成果和技术进展。例如,像 DeepSeek 这样的创新技术不断涌现,大幅削减了模型参数,还通过强化学习与模型蒸馏技术,让小模型在数学题解答方面超越了 GPT-4,并且开源代码和开放 API,为技术发展开辟了新路径。在这样的环境中工作,你将持续学习,不断提升自己的技术能力,保持在行业内的竞争力。
(三)薪资待遇优厚
由于大模型领域的专业人才稀缺,相关职位通常提供高于平均水平的薪酬待遇。以 AI 大模型工程师为例,在一线城市,其平均年薪超过 30 万人民币,高级工程师的年薪更是可达 50 万人民币以上。而且,随着个人技能的提升和经验的积累,薪资还会进一步增长。如果你愿意投入时间和精力学习新技能,转行后的经济回报将十分可观。
二、大模型领域有哪些热门岗位?
(一)模型研发工程师
模型研发工程师主要负责设计和开发新的深度学习模型架构。他们需要深入研究最新的模型论文,理解并复现复杂的模型结构,在此基础上进行创新改进。同时,还要关注模型训练过程中的性能优化,确保模型在有限的计算资源下达到最佳效果。对于那些对模型架构有深入理解,喜欢创新和设计的程序员来说,这是一个理想的岗位。在这里,你能够在技术深度上实现突破,参与到前沿技术的研究与开发中。
(二)算法工程师
算法工程师的工作重点是将理论算法转化为实际可用的解决方案。他们需要具备良好的问题分析能力,针对不同的业务需求选择合适的算法,并进行实现、调试以及性能优化。无论是金融风控、广告投放,还是智能医疗、电商推荐等领域,都离不开算法工程师的智慧。如果你喜欢解决具体问题,对算法应用充满热情,那么算法工程师岗位将让你在实际项目中充分发挥算法的力量,创造实实在在的价值。
(三)数据科学家
数据科学家主要使用大模型进行数据分析和预测,为决策提供科学依据。他们的工作包括数据清洗、特征工程、模型训练、结果解释等。在市场分析、用户行为分析、商业智能等诸多领域,数据科学家都发挥着关键作用。对于对数据分析感兴趣,希望结合模型进行深入分析的程序员来说,数据科学家是一个充满挑战和机遇的岗位。
(四)AI 产品经理
AI 产品经理负责定义和推动 AI 产品的开发,涵盖市场调研、产品规划、需求管理、项目协调等多个方面。这个岗位要求从业者具备良好的沟通技巧和商业敏感度,能够有效地连接技术团队与市场需求。同时,对 AI 技术和应用场景的理解也是必不可少的。如果你希望从技术转向管理,同时又不想脱离 AI 技术,那么 AI 产品经理岗位非常适合你。
(五)机器学习工程师
机器学习工程师主要负责构建和维护机器学习系统,工作内容包括设计实验、实现算法、训练模型、优化模型,以及将模型部署到生产环境中,并确保模型在生产环境中稳定可靠地运行。他们不仅要处理好数据管道的问题,还要对特定领域知识有一定的理解。适合对机器学习全流程感兴趣,希望将算法转化为实际产品的程序员。
(六)深度学习工程师
深度学习工程师专注于深度神经网络的设计、训练和应用。他们需要深入理解神经网络的原理,熟练掌握相关的编程框架和工具,解决复杂的数学问题,以实现高效的深度学习模型。如果你对深度学习技术有浓厚兴趣,渴望在这个领域深入发展,那么深度学习工程师岗位将为你提供广阔的发展空间。
三、如何选择适合自己的岗位?
(一)结合兴趣爱好
兴趣是最好的老师。如果你对模型架构的设计和创新充满热情,那么模型研发工程师岗位可能更适合你;如果你热衷于运用算法解决实际问题,算法工程师岗位或许是你的最佳选择;要是你对数据分析有着浓厚的兴趣,数据科学家岗位可能会让你如鱼得水。只有选择自己感兴趣的岗位,你才会更有动力去学习和探索,也更容易在工作中取得好的成绩。
(二)评估自身技能
在选择岗位时,要对自己现有的技能进行全面评估。比如,你具备扎实的编程基础和良好的算法理解能力,那么模型研发工程师、算法工程师、机器学习工程师等技术型岗位可能比较适合你;如果你不仅有技术背景,还具备较强的沟通和项目管理能力,那么 AI 产品经理岗位可能更能发挥你的优势;要是你对数据处理和分析有丰富的经验,数据科学家岗位可能是你的不二之选。
(三)考虑职业规划
你还需要结合自己的职业规划来选择岗位。如果你希望在技术领域深耕,成为某一技术方向的专家,那么专注于技术研发的岗位,如模型研发工程师、深度学习工程师等会更符合你的需求;如果你想逐步转向管理岗位,积累项目管理和团队协作经验,那么 AI 产品经理岗位可能是一个不错的起点。
总之,2025 年程序员转行做大模型领域,有着广阔的职业发展前景和丰富的岗位选择。只要你明确自己的兴趣、技能和职业规划,就能找到适合自己的岗位。在这个快速变化的技术领域,不断学习和实践是保持竞争力的关键。希望每一位勇敢转行的程序员,都能在大模型领域开启一段精彩的职业新旅程!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。