几种不同绝缘的理解

本文详细介绍了医用电气设备标准中关于基本绝缘、双重绝缘、加强绝缘和附加绝缘(辅助绝缘)的概念。基本绝缘提供一重防护,而双重绝缘和加强绝缘提供两重防护。附加绝缘(辅助绝缘)依赖于基本绝缘,不能单独存在。加强绝缘作为一个独立的绝缘系统,其强度等同于双重绝缘。功能绝缘则用于实现设备功能而非防止电击。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《GB 9706.1-2020 医用电气设备 第1部分:基本安全和基本性能的通用要求》中提到了一些不同的绝缘,下面谈谈对于这些不同绝缘的理解。

标准中提到的几种绝缘和相关名词的定义如下:

1、基本绝缘:对于电击提供基本防护的绝缘。注:基本绝缘提供一重防护措施。

2、双重绝缘:由基本绝缘和辅助绝缘组成的绝缘。注:双重绝缘提供两重防护措施。

3、加强绝缘:提供两重防护措施的单一绝缘系统。

4、附加绝缘:附加于基本绝缘的独立绝缘,当基本绝缘失效时由它来提供对电击的防护。注:辅助绝缘提供一重防护措施。

这里有个问题,在GB9706.1-2020中,(Supplementary insulation)的名词翻译为附加绝缘,而在GB9706.1-2007中翻译为辅助绝缘。两者的定义解释是一样的,不知是故意为之还是翻译上的不一致。

A、什么是基本绝缘?

 例如常见的国标RV多股铜芯软电线,在铜芯导体的外面有且仅有一层PVC材料进行绝缘,这就是基本绝缘,也就是提供了一重绝缘防护。

B、什么是附加绝缘(辅助绝缘)?

例如常见的国标RVV软电线,是多芯结构,其中,每根芯线有一层PVC绝缘层,在几根芯线之外,还有一层 PVC绝缘层(图中最外层的黑色外皮),也就是对于每一根芯线而言,其实是有两层防护。那么这个最外面的黑色绝缘层,就是叫附加绝缘,或者叫辅助绝缘。

这里需要特别注意一点的是,附加绝缘(辅助绝缘)一定是依存于基本绝缘而存在的,附加绝缘(辅助绝缘)是不可能独立存在的,这是一个有一才有二的关系。

C、什么是双重绝缘?

基本绝缘+附加绝缘=双重绝缘。

双重绝缘其实是另一个概念了,跟基本绝缘和附加绝缘是不一样的定义。单独的基本绝缘是一重绝缘,附加绝缘也是一重绝缘,只不过附加绝缘不能单独存在,所以标准里面描述的是辅助绝缘提供一重防护措施。

D、什么是加强绝缘?

2020版标准里写的是很简单的一句话:提供两重防护措施的单一绝缘系统。而2007版标准里的描述可能更容易让人理解一些:用于带电部分的单绝缘系统,它对电击的防护程度相当于本标准规定条件下的双重绝缘。

也就是说,加强绝缘有两个特点:第一,加强绝缘是独立的绝缘系统。第二,加强绝缘的强度相当于双重绝缘。加强绝缘既然是独立的绝缘系统,那么它就可以脱离基本绝缘而独立存在,事实上加强绝缘也不易划分为基本绝缘和附加绝缘两个部分。加强绝缘可能是一个一体成型的隔离物,或者是许多隔离物构成的整体。

 例如常见的电源线的插头,可以认为就是一个加强绝缘系统。它直接包在导电金属插脚上,但是只是一个不易分割的整体,但是它的强度相当于双重绝缘。

PS:

功能绝缘

在工作中发现很多人对于功能绝缘的概念还不是很清晰。其实功能绝缘,顾名思义,就是为了完成器件/设备本身功能而设置的导电部件之间的绝缘,例如PCB上的绿油、漆包线的外漆、电解电容的塑胶外壳等。最重要的是,功能绝缘不是为了防止电击而设立的绝缘体系,即使它也够一定的强度。

### 二维前缀和算法在瓦片图案生成或处理中的应用 #### 定义与基本原理 二维前缀和是一种用于快速求解矩形区域内元素总和的技术。对于给定的一个矩阵 `A`,可以预先计算一个新的矩阵 `prefixSum`,其中每个元素 `(i,j)` 表示从原点 `(0,0)` 到当前坐标的子矩阵内所有数值之和。 通过这种方式,在后续查询任意指定区域内的元素累积值时只需常数时间复杂度 O(1),因为只需要访问四个预处理过的节点即可完成加减运算得出结果[^1]。 #### 应用场景分析 当涉及到像地图服务这样的应用场景时——特别是采用分层切片机制的地图系统(如微软 Bing 地图),这种技术能够显著提升性能效率: - **加速渲染过程**:利用二维前缀和可以在瞬间获取特定范围内的数据汇总信息,从而加快图像合成速度; - **简化碰撞检测逻辑**:游戏开发等领域经常需要用到对象间相互作用判断,借助此方法可迅速定位目标区间并作出响应; - **优化路径规划算法**:无论是最短路还是其他形式的空间搜索问题,都能受益于高效的数据检索能力所带来的优势[^2]。 #### 实现案例展示 下面给出一段 Python 代码片段作为例子说明如何基于上述理论框架构建实际解决方案: ```python def build_prefix_sum(matrix): rows = len(matrix) cols = len(matrix[0]) if matrix else 0 prefix_sum = [[0]*(cols+1) for _ in range(rows+1)] for i in range(1,rows+1): for j in range(1,cols+1): prefix_sum[i][j]=matrix[i-1][j-1]+\ prefix_sum[i-1][j]+ \ prefix_sum[i][j-1]- \ prefix_sum[i-1][j-1] return prefix_sum def query_submatrix_sum(prefix_sum,x1,y1,x2,y2): """Query sum of elements within sub-matrix defined by top-left (x1,y1), bottom-right(x2,y2).""" return prefix_sum[x2+1][y2+1]-prefix_sum[x1][y2+1]-prefix_sum[x2+1][y1]+prefix_sum[x1][y1] # Example usage: input_matrix=[[3,0,1,4],[2,8,7,5],[4,6,9,1]] ps=build_prefix_sum(input_matrix) print(query_submatrix_sum(ps,1,1,2,2)) # Output should be 30 which is the sum inside this area. ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值