数学分析(九)-定积分5-2-定积分计算1-1:定积分换元积分法【若f在[a,b]连续,φ´在[α,β]可积,且φ(α)=a、φ(β)=b,则:∫ₐᵇf(x)dx=∫ₐᵝf(φ(t))φ´(t)dt】

对原函数的存在性有了正确的认识,就能顺利地把不定积分的换元积分法和分部积分法移植到定积分计算中来.

定理 9.12 (定积分换元积分法)

若函数 f f f [ a , b ] [a, b] [a,b] 上连续, φ ′ \varphi^{\prime} φ [ α , β ] [\alpha, \beta] [α,β] 上可积, 且满足

φ ( α ) = a , φ ( β ) = b , φ ( [ α , β ] ) ⊆ [ a , b ] , \varphi(\alpha)=a, \quad \varphi(\beta)=b, \quad \varphi([\alpha, \beta]) \subseteq[a, b], φ(α)=a,φ(β)=b,φ([α,β])[a,b],

则有定积分换元公式:

∫ a b f ( x ) d x = ∫ a β f ( φ ( t ) ) φ ′ ( t ) d t . ( 9 ) \int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{\beta} f(\varphi(t)) \varphi^{\prime}(t) \mathrm{d} t .\quad\quad(9) abf(x)dx=aβf(φ(t))φ(t)dt.(9)


由于 f f f [ a , b ] [a, b] [a,b] 上连续, 因此它的原函数存在. 设 F F F f f f [ a , b ] [a, b] [a,b] 上的一个原函数,由复合函数微分法

d d t ( F ( φ ( t ) ) ) = F ′ ( φ ( t ) ) φ ′ ( t ) = f ( φ ( t ) ) φ ′ ( t ) , \cfrac{\mathrm{d}}{\mathrm{d} t}(F(\varphi(t)))=F^{\prime}(\varphi(t)) \varphi^{\prime}(t)=f(\varphi(t)) \varphi^{\prime}(t), dtd(F(φ(t)))=F(φ(t))φ(t)=f(φ(t))φ(t),

可见 F ( φ ( t ) ) F(\varphi(t)) F(φ(t)) f ( φ ( t ) ) φ ′ ( t ) f(\varphi(t)) \varphi^{\prime}(t) f(φ(t))φ(t)的一个原函数. 因为 f ( φ ( t ) ) φ ′ ( t ) f(\varphi(t)) \varphi^{\prime}(t) f(φ(t))φ(t) [ α , β ] [\alpha, \beta] [α,β] 上可积, 根据牛顿一莱布尼茨公式 (定理 9.1 ) 的注 2,2 )之所述, 证得

∫ a β f ( φ ( t ) ) φ ′ ( t ) d t = F ( φ ( β ) ) − F ( φ ( α ) ) = F ( b ) − F ( a ) = ∫ a b f ( x ) d x . \begin{aligned} \int_{a}^{\beta} f(\varphi(t)) \varphi^{\prime}(t) \mathrm{d} t & =F(\varphi(\beta))-F(\varphi(\alpha)) \\ & =F(b)-F(a)=\int_{a}^{b} f(x) \mathrm{d} x . \end{aligned} aβf(φ(t))φ(t)dt

  • 9
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值