[C++]使用纯opencv部署yolov11-seg实例分割onnx模型

【算法介绍】

在C++中使用纯OpenCV部署YOLOv11-seg进行实例分割是一项具有挑战性的任务,因为YOLOv11通常是用PyTorch等深度学习框架实现的,而OpenCV本身并不直接支持加载和运行PyTorch模型。然而,可以通过一些间接的方法来实现这一目标,比如将PyTorch模型转换为ONNX格式,然后使用OpenCV的DNN模块加载ONNX模型。

部署过程大致如下:首先,需要确保开发环境已经安装了OpenCV 4.x(带有DNN模块)和必要的C++编译器。然后,将YOLOv11-seg模型从PyTorch转换为ONNX格式,这通常涉及使用PyTorch的torch.onnx.export函数。接下来,使用OpenCV的DNN模块加载ONNX模型,并准备好模型的配置文件和类别名称文件。

在模型推理阶段,需要预处理输入图像(如调整大小、归一化等)以符合模型的输入要求,将预处理后的图像输入到模型中,并获取分割结果。对结果进行后处理,包括解析输出、应用非极大值抑制(NMS)和绘制分割边界等。

需要注意的是,由于YOLOv11-seg是一个复杂的模型,其输出可能包含多个层的信息,因此需要仔细解析模型输出,并根据YOLOv11-seg的具体实现进行后处理。此外,由于OpenCV的DNN模块对ONNX的支持可能有限,某些YOLOv11-seg的特性可能无法在OpenCV中直接实现,这时可能需要寻找替代方案。

总之,使用纯OpenCV部署YOLOv11-seg需要深入理解模型架构、OpenCV的DNN模块以及ONNX格式。

【效果展示】

【实现部分代码】

#include <iostream>
#include<opencv2/opencv.hpp>

#include<math.h>
#include "yolov11_seg.h"
#include<time.h>
#define  VIDEO_OPENCV //if define, use opencv for video.

using namespace std;
using namespace cv;
using namespace dnn;

template<typename _Tp>
int yolov11(_Tp& task, cv::Mat& img, std::string& model_path)
{


	cv::dnn::Net net;
	if (task.ReadModel(net, model_path, false)) {
		std::cout << "read net ok!" << std::endl;
	}
	else {
		return -1;
	}
	//生成随机颜色
	std::vector<cv::Scalar> color;
	srand(time(0));
	for (int i = 0; i < 80; i++) {
		int b = rand() % 256;
		int g = rand() % 256;
		int r = rand() % 256;
		color.push_back(cv::Scalar(b, g, r));
	}
	std::vector<OutputParams> result;

	bool isPose = false;
	if (typeid(task) == typeid(Yolov8Pose)) {
		isPose = true;
	}
	PoseParams poseParams;
	if (task.Detect(img, net, result)) {

		if (isPose)
			DrawPredPose(img, result, poseParams);
		else
		DrawPred(img, result, task._className, color);
		
	}
	else {
		std::cout << "Detect Failed!" << std::endl;
	}
	system("pause");
	return 0;
}


template<typename _Tp>
int video_demo(_Tp& task, std::string& model_path)
{
	std::vector<cv::Scalar> color;
	srand(time(0));
	for (int i = 0; i < 80; i++) {
		int b = rand() % 256;
		int g = rand() % 256;
		int r = rand() % 256;
		color.push_back(cv::Scalar(b, g, r));
	}
	std::vector<OutputParams> result;
	cv::VideoCapture cap("car.mp4");
	if (!cap.isOpened())
	{
		std::cout << "open capture failured!" << std::endl;
		return -1;
	}
	cv::Mat frame;
	cv::dnn::Net net;
	if (task.ReadModel(net, model_path, true)) {
		std::cout << "read net ok!" << std::endl;
	}
	else {
		std::cout << "read net failured!" << std::endl;
		return -1;
	}


	while (true)
	{

		cap.read(frame);
		if (frame.empty())
		{
			std::cout << "read to end" << std::endl;
			break;
		}
		result.clear();


		if (task.Detect(frame, net, result)) {

			DrawPred(frame, result, task._className, color,true);
	
		}
		int k = waitKey(10);
		if (k == 27) { //esc 
			break;
		}

	}
	cap.release();

	system("pause");

	return 0;
}



int main() {

	string detect_model_path = "./yolo11n-seg.onnx";
	Yolov11Seg detector;
	video_demo(detector, detect_model_path);
}



【视频演示】

C++使用纯opencv部署yolov11-seg实例分割onnx模型_哔哩哔哩_bilibili【测试环境】vs2019cmake==3.24.3opencv==4.8.0更多信息和源码下载参考博文:https://blog.csdn.net/FL1623863129/article/details/142716713, 视频播放量 1、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 未来自主研究中心, 作者简介 未来自主研究中心,相关视频:使用易语言调用opencv进行视频和摄像头每一帧处理,C# winform部署yolov10的onnx模型,图像分割领域如何水一篇论文,怎样学能快速出结果?UNet/Deeplab/Mask2former/SAM图像分割算法全详解!,C#使用onnxruntime部署Detic检测2万1千种类别的物体,强烈推荐!国防科技大学OpenCV图像处理全套教程!终于有人将opencv讲透了!存下吧,比啃书好多了!机器视觉/人脸检测/计算机视觉/人工智能,易语言部署yolov8的onnx模型,yolov8最新版onnx部署Android安卓ncnn,C# winform使用纯opencvsharp部署yolox-onnx模型,使用python部署yolov10的onnx模型,C# winform利用seetaface6实现C#人脸检测活体检测口罩检测年龄预测性别判断眼睛状态检测icon-default.png?t=O83Ahttps://www.bilibili.com/video/BV1oE1dYTEGh/
【源码下载】

https://download.csdn.net/download/FL1623863129/89848150


【测试环境】

vs2019
cmake==3.24.3
opencv==4.8.0

【运行步骤】

下载模型:https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt

转换模型:yolo export model=yolo11n-seg.pt format=onnx dynamic=False opset=12 

编译项目源码,将模型,视频路径对应到源码即可运行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农张三疯

你的打赏是我写文章最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值