深度学习之resnet网络

论文地址:Deep Residual Learning for Image Recognition

译文地址:http://blog.csdn.net/wspba/article/details/57074389

摘要

越深的神经网络训练起来越困难。本文展示了一种残差学习框架,能够简化使那些非常深的网络的训练,该框架使得层能根据其输入来学习残差函数而非原始函数(unreferenced functions)。本文提供了全面的依据表明,这些残差网络的优化更简单,而且能由更深的层来获得更高的准确率。本文在ImageNet数据集上使用了一个152层深的网络来评估我们的残差网络,虽然它相当于8倍深的VGG网络,但是在本文的框架中仍然只具有很低的复杂度。这些残差网络的一个组合模型(ensemble)在ImageNet测试集上的错误率仅为 3.57%。这个结果在2015年的ILSVRC分类任务上获得了第一名的成绩。我们在CIFAR-10上对100层和1000层的残差网络也进行了分析。

表达的深度在很多视觉识别任务中具有非常核心的重要性。仅仅由于我们相当深的表达,便在COCO目标检测数据集上获得了 28% 的相对提升。 深度残差网络是我们参加ILSVRC & COCO 2015 竞赛上所使用模型的基础,并且我们在ImageNet检测、ImageNet定位、COCO检测以及COCO分割上均获得了第一名的成绩。

阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

深度学习之resnet网络

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭