0 写在前面
机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。
🚀详情:机器学习强基计划(附几十种经典模型源码合集)
国内教材很少详细阐述因子分解和独立图概念,博主在查阅了大量外文文献后,将相关知识总结为本文。
1 代数上的因式分解
考虑代数上因子分解的实例
w ⋅ x + w ⋅ y + w ⋅ z ⇒ 因子分解 w ⋅ ( x + y + z ) w\cdot x+w\cdot y+w\cdot z\xRightarrow{\text{因子分解}}w\cdot \left( x+y+z \right)