机器学习强基计划5-3:图文详解因子分解与独立图I-Map(附例题分析+Python实验)

本文深入探讨机器学习中的因子分解概念,结合吉布斯分布解释如何将联合概率建模为因子分解形式。讨论独立图与完美图在概率图模型中的作用,并通过实例分析独立性等价。文章还涵盖了条件独立性、边际独立性和独立性图模型。

0 写在前面

机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。

🚀详情:机器学习强基计划(附几十种经典模型源码合集)


国内教材很少详细阐述因子分解和独立图概念,博主在查阅了大量外文文献后,将相关知识总结为本文。


1 代数上的因式分解

考虑代数上因子分解的实例

w ⋅ x + w ⋅ y + w ⋅ z ⇒ 因子分解 w ⋅ ( x + y + z ) w\cdot x+w\cdot y+w\cdot z\xRightarrow{\text{因子分解}}w\cdot \left( x+y+z \right)

评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.Winter`

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值