受到智能单元(如人脑)可以处理不同类型数据的启发,有一种趋势是使 LLM 能够理解各种形式的数据,例如音频audiogpt和图片。尽管在解释多模态信息方面取得了重大进展(Yin et al., 2023),但使 LLM 能够理解图数据仍然相对未被探索。
现在的一些研究表明,LLM在处理图数据时的表现低于平均。就算微调最近的LLaMA2-7B/13B仍然在几个基本的图推理任务中表现不佳。这就提出了一个基本问题:是什么阻碍了 LLM 在图推理任务上的能力?
作者认为这是由将图转换为自然语言描述(Graph2Text)的做法导致的。
1.采用Graph2Text会使得LLM被迫从连续文本中辨别隐式图形结构。与专门用来处理图结构的学习模型相比,LLM 在基于顺序图描述的图学习方面可能面临效率低下的问题。
2.采用Graph2Text会导致冗长的文本,这同样不利于LLM学习。
图 1:Graph2Text 与 GraphLLM 的演示。LLM的任务是计算从起始虫洞传递到结束虫洞所需的最小暗物质量,给定每个节点的连通性图和文本描述。
为了解决Graph2Text的问题,本文提出了GraphLLM模型。其核心思想是将图学习模块(图转换器)与LLM协同集成,以增强图推理能力。
1.GraphLLM 采用端到端方法将图学习模型和 LLM 集成到一个有凝聚力的系统中。通过与图学习模型协同作用,LLM 可以利用其对图数据的卓越表达能力。
2.GraphLLM 将图形信息压缩为一个简洁的、固定长度的prefix,从而避免了生成冗长图形描述。
定义
1. (输入图)由一个n维特征和一个邻接矩阵组成{V,ε},Graph2Text的方法将图形描述 A(V, E) → TextDescription。
2. (图推理任务微调)给定一个预训练好的LLM M其中包含参数θ,m个指令对的数据集其中,每个是一个图,以及一个特定于任务的目标函数 L。微调过程旨在通过最小化以下损失函数来学习特定于任务的参数 θ*
其中M(;θ')表示由参数θ'微调的LLM的输出
GraphLLM
GraphLLM的架构
。。。